A306541 The least prime q such that Kronecker(D/q) >= 0 where D runs through all positive fundamental discriminants (A003658).
2, 5, 2, 2, 3, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 7, 2, 2, 2, 3, 2, 3, 2, 2, 7, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 3, 2, 2, 13, 2, 3, 2, 2, 2, 2, 7, 2, 2, 3, 2, 3, 2, 2, 5, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2
Offset: 1
Keywords
Examples
Let K = Q[sqrt(293)] with D = 293 = A003658(90), we have: (293/2) = (293/3) = ... = (293/13) = -1 and (293/17) = +1, so 2, 3, 5, 7, 11 and 13 remain inert in K and 17 decomposes in K, so a(90) = 17.
Crossrefs
Programs
-
PARI
b(D)=forprime(p=2, oo, if(kronecker(D, p)>=0, return(p))) for(n=1, 300, if(isfundamental(n), print1(b(n), ", ")))
Comments