A306542 The least prime q such that Kronecker(D/q) >= 0 where D runs through all negative fundamental discriminants (-A003657).
3, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 11, 2, 3, 2, 2, 2, 3, 17, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 5, 2, 2, 2, 2, 3, 2, 41, 2, 2, 2, 3, 2, 2, 7, 2, 3, 2, 3, 5, 2, 2, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 5, 2, 2, 2, 3, 2, 2, 2, 7
Offset: 1
Keywords
Examples
Let K = Q[sqrt(-3763)] with D = -3763 = -A003657(1147), we have: (-3763/2) = (-3763/3) = ... = (-3763/19) = -1 and (-3763/23) = +1, so 2, 3, 5, 7, 11, 13, 17 and 19 remain inert in K and 23 decomposes in K, so a(1147) = 23.
Crossrefs
Programs
-
PARI
b(D)=forprime(p=2, oo, if(kronecker(D, p)>=0, return(p))) for(n=1, 300, if(isfundamental(-n), print1(b(-n), ", ")))
Comments