This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306543 #37 Mar 26 2021 19:28:16 %S A306543 1,1,2,1,6,2,24,9,1,120,44,4,720,265,29,1,5040,1854,206,8,40320,14833, %T A306543 1708,112,1,362880,133496,15702,1168,16,3628800,1334961,159737,13365, %U A306543 436,1,39916800,14684570,1780696,159414,6984,32,479001600,176214841,21599745,2036488,114124,1708,1 %N A306543 Number T(n,k) of permutations p of [n] such that |p(j)-j| >= k (for all j in [n]); triangle T(n,k), n >= 0, 0 <= k <= floor(n/2), read by rows. %H A306543 Alois P. Heinz, <a href="/A306543/b306543.txt">Rows n = 0..22, flattened</a> %H A306543 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A306543 T(n,k) = Sum_{j=k..floor(n/2)} A299789(n,j) for n > 0. %e A306543 Triangle T(n,k) begins: %e A306543 1; %e A306543 1; %e A306543 2, 1; %e A306543 6, 2; %e A306543 24, 9, 1; %e A306543 120, 44, 4; %e A306543 720, 265, 29, 1; %e A306543 5040, 1854, 206, 8; %e A306543 40320, 14833, 1708, 112, 1; %e A306543 362880, 133496, 15702, 1168, 16; %e A306543 3628800, 1334961, 159737, 13365, 436, 1; %e A306543 39916800, 14684570, 1780696, 159414, 6984, 32; %e A306543 479001600, 176214841, 21599745, 2036488, 114124, 1708, 1; %e A306543 ... %p A306543 T:= proc(n, k) option remember; `if`(n=0, 1, LinearAlgebra[ %p A306543 Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)>=k, 1, 0)))) %p A306543 end: %p A306543 seq(seq(T(n, k), k=0..floor(n/2)), n=0..12); %t A306543 T[n_, k_] := T[n, k] = If[n==0, 1, Permanent[Table[ %t A306543 If[Abs[i-j] >= k, 1, 0], {i, n}, {j, n}]]]; %t A306543 Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Mar 26 2021, after _Alois P. Heinz_ *) %Y A306543 Columns k=0-6 give (offsets may differ): A000142, A000166, A001883, A075851, A075852, A183242, A183243. %Y A306543 T(2n,n) gives A000012. %Y A306543 T(2n+1,n) gives A000079. %Y A306543 T(2n+2,n) gives A183245 for n > 0. %Y A306543 T(2n+3,n) gives A183246 for n > 0. %Y A306543 T(2n+4,n) gives A183247 for n > 0. %Y A306543 Cf. A183244, A299789. %K A306543 nonn,tabf %O A306543 0,3 %A A306543 _Alois P. Heinz_, Feb 22 2019