cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306548 Triangle T(n,k) read by rows, where the k-th column is the shifted self-convolution of the power function n^k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 10, 8, 1, 0, 0, 5, 20, 34, 16, 1, 0, 0, 6, 35, 104, 118, 32, 1, 0, 0, 7, 56, 259, 560, 418, 64, 1, 0, 0, 8, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0, 9, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0, 0, 10, 165, 1968, 14988, 64064, 130835, 101504, 20758, 512, 1, 0, 0
Offset: 0

Views

Author

Kolosov Petro, Feb 23 2019

Keywords

Comments

For n > 0 an odd-power identity n^(2m+1)+1, m >= 0 can be found using the current sequence. The sum of the n-th diagonal of T(n,k) over 0 <= k <= m multiplied by A(m,k) gives n^(2m+1)-1, where A(m,k) = A302971(m,k)/A304042(m,k). For example, consider the case n=4, m=2: the n-th diagonal of T(n, 0 <= k <= m) is {5, 10, 34}, and the m-th row of triangle A(m, 0 <= k <= m) is {1, 0, 30}, thus (3+1)^5 + 1 = 5*1 + 10*0 + 34*30 = 1025.

Examples

			==================================================================
k=    0     1     2     3      4      5     6    7    8    9    10
==================================================================
n=0:  2;
n=1:  2,    0;
n=2:  3,    0,    0;
n=3:  4,    1,    0,    0;
n=4:  5,    4,    1,    0,     0;
n=5:  6,   10,    8,    1,     0,     0;
n=6:  7,   20,   34,   16,     1,     0,    0;
n=7:  8,   35,  104,  118,    32,     1,    0,   0;
n=8:  9,   56,  259,  560,   418,    64,    1,   0,   0;
n=9:  10,  84,  560, 2003,  3104,  1510,  128,   1,   0,   0;
n=10: 11, 120, 1092, 5888, 16003, 17600, 5554, 256,   1,   0;   0;
...
		

Crossrefs

Nonzero terms of columns k=0..5 give: A000027, A000292, A033455, A145216, A145217, A145218.
Partial sums of columns k=1..2 give: A000332, A259181.

Programs

  • Mathematica
    f[m_, s_] := Piecewise[{{s^m, s >= 0}, {0, True}}];
    F[n_, m_] := Sum[f[m, n - k]*f[m, k], {k, -Infinity, +Infinity}];
    T[n_, k_] := F[n - k, k];
    Column[Table[T[n, k], {n, 0, 12}, {k, 0, n}], Left]

Formula

f(m, s) = s^m, if s >= 0;
f(m, s) = 0, otherwise.
F(n,m) = Sum_{k} f(m, n-k) * f(m, k), -oo < k < +oo;
T(n,k) = F(n-k, k).

Extensions

Edited by Kolosov Petro, Mar 13 2019