A306548 Triangle T(n,k) read by rows, where the k-th column is the shifted self-convolution of the power function n^k, n >= 0, 0 <= k <= n.
0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 10, 8, 1, 0, 0, 5, 20, 34, 16, 1, 0, 0, 6, 35, 104, 118, 32, 1, 0, 0, 7, 56, 259, 560, 418, 64, 1, 0, 0, 8, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0, 9, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0, 0, 10, 165, 1968, 14988, 64064, 130835, 101504, 20758, 512, 1, 0, 0
Offset: 0
Examples
================================================================== k= 0 1 2 3 4 5 6 7 8 9 10 ================================================================== n=0: 2; n=1: 2, 0; n=2: 3, 0, 0; n=3: 4, 1, 0, 0; n=4: 5, 4, 1, 0, 0; n=5: 6, 10, 8, 1, 0, 0; n=6: 7, 20, 34, 16, 1, 0, 0; n=7: 8, 35, 104, 118, 32, 1, 0, 0; n=8: 9, 56, 259, 560, 418, 64, 1, 0, 0; n=9: 10, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0; n=10: 11, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0; 0; ...
Links
- D. V. Widder et al., The Convolution Transform, Bull. Amer. Math. Soc. 60 (1954), 444-456.
- Wikipedia, Convolution.
- Wikipedia, Convolution power.
Crossrefs
Programs
-
Mathematica
f[m_, s_] := Piecewise[{{s^m, s >= 0}, {0, True}}]; F[n_, m_] := Sum[f[m, n - k]*f[m, k], {k, -Infinity, +Infinity}]; T[n_, k_] := F[n - k, k]; Column[Table[T[n, k], {n, 0, 12}, {k, 0, n}], Left]
Formula
f(m, s) = s^m, if s >= 0;
f(m, s) = 0, otherwise.
F(n,m) = Sum_{k} f(m, n-k) * f(m, k), -oo < k < +oo;
T(n,k) = F(n-k, k).
Extensions
Edited by Kolosov Petro, Mar 13 2019
Comments