A306549 a(n) is the product of the positions of the zeros in the binary expansion of n (the most significant bit having position 1).
1, 1, 2, 1, 6, 2, 3, 1, 24, 6, 8, 2, 12, 3, 4, 1, 120, 24, 30, 6, 40, 8, 10, 2, 60, 12, 15, 3, 20, 4, 5, 1, 720, 120, 144, 24, 180, 30, 36, 6, 240, 40, 48, 8, 60, 10, 12, 2, 360, 60, 72, 12, 90, 15, 18, 3, 120, 20, 24, 4, 30, 5, 6, 1, 5040, 720, 840, 120, 1008
Offset: 0
Examples
The first terms, alongside the positions of zeros and the binary representation of n, are: n a(n) Pos.zeros bin(n) -- ---- --------- ------ 0 1 {1} 0 1 1 {} 1 2 2 {2} 10 3 1 {} 11 4 6 {2,3} 100 5 2 {2} 101 6 3 {3} 110 7 1 {} 111 8 24 {2,3,4} 1000 9 6 {2,3} 1001 10 8 {2,4} 1010 11 2 {2} 1011 12 12 {3,4} 1100 13 3 {3} 1101 14 4 {4} 1110 15 1 {} 1111
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..16384
Programs
-
Mathematica
A306549[n_] := Times @@ Flatten[Position[IntegerDigits[n, 2], 0]]; Array[A306549, 100, 0] (* Paolo Xausa, Jun 01 2024 *)
-
PARI
a(n) = my (b=binary(n)); prod(k=1, #b, if (b[k]==0, k, 1))
-
PARI
a(n) = vecprod(Vec(select(x->(x==0), binary(n), 1)));
-
Python
from math import prod def a(n): return prod(i for i, bi in enumerate(bin(n)[2:], 1) if bi == "0") print([a(n) for n in range(70)]) # Michael S. Branicky, Jun 01 2024
Comments