A306556 Integers that appear as (unreduced) numerators of segment endpoints when a ternary Cantor set is created.
0, 1, 2, 3, 6, 7, 8, 9, 18, 19, 20, 21, 24, 25, 26, 27, 54, 55, 56, 57, 60, 61, 62, 63, 72, 73, 74, 75, 78, 79, 80, 81, 162, 163, 164, 165, 168, 169, 170, 171, 180, 181, 182, 183, 186, 187, 188, 189, 216, 217, 218, 219, 222, 223, 224, 225, 234, 235, 236, 237, 240, 241, 242, 243
Offset: 1
Examples
On 1st step we have [0,1/3] U [2/3,3/3] so we get a(1)=0, a(2)=1, a(3)=2, a(4)=3. On 2nd step we have [0,1/9] U [2/9,3/9] U [6/9,7/9] U [8/9,9/9] so we get in addition a(5)=6, a(6)=7, a(7)=8, a(8)=9.
Links
- Georg Cantor, Über unendliche, lineare Punktmannigfaltigkeiten V" [On infinite, linear point-manifolds (sets), Part 5]. Mathematische Annalen (in German). (1883) 21: 545-591.
- Paul du Bois-Reymond, Der Beweis des Fundamentalsatzes der Integralrechnung, Mathematische Annalen (in German), (1880), 16, footnote on p. 128.
- Eric Weisstein's World of Mathematics, Cantor Set
- Wikipedia, Cantor set
- Index entries for 3-automatic sequences.
Programs
-
PARI
A306556(n) = {sm=0;while(n>1,ex=floor(log(n)/log(2));if(n-2^ex==0,sm=sm+3^(ex-1),sm=sm+2*3^(ex-1));n=n-2^ex);return(sm)}
-
PARI
a(n) = n--; fromdigits(binary(n>>1),3)*2 + (n%2); \\ Kevin Ryde, Apr 23 2021
Formula
a(1)=0, a(2)=1;
a(2^n) = 3^(n-1) for n >= 1;
a(2^n+k) = 2*3^(n-1) + a(k) for 1 <= k <= 2^n.
From Peter Munn, Jul 09 2019: (Start)
a(2n-1) = (A055247(2n-1)-1)/3.
a(2n) = (A055247(2n) +1)/3.
a(2n-1) = (A191108(n)-1)/2.
a(2n) = (A191108(n)+1)/2.
(End)
Comments