cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306557 Numerator coefficients of the bivariate Maclaurin series ("inverse Kepler equation") developed as Lagrange inversion E=KeplerInv(e,M) of Kepler's equation M = Kepler(e,E) = E - e*sin(E).

This page as a plain text file.
%I A306557 #18 Feb 26 2019 10:53:51
%S A306557 1,1,9,1,54,225,1,243,4131,11025,1,1008,50166,457200,893025,1,4077,
%T A306557 520218,11708154,70301925,108056025,1,16362,5020623,243313164,
%U A306557 3274844175,14427513450,18261468225,1,65511,46789461,4535570691,119537963811,1107456067125,3821273720775,4108830350625
%N A306557 Numerator coefficients of the bivariate Maclaurin series ("inverse Kepler equation") developed as Lagrange inversion E=KeplerInv(e,M) of Kepler's equation M = Kepler(e,E) = E - e*sin(E).
%C A306557 Coefficients of the numerator polynomials of the bivariate Maclaurin series ("inverse Kepler equation") developed as Lagrange inversion E = KeplerInv(e,M) of Kepler's equation M = Kepler(e,E) = E - e*sin(E), where e=numeric eccentricity, M=mean anomaly, E=eccentric anomaly. The series is KeplerInv(e,M) = M/(1-e) + Sum_{n>=1} (-1)^n*(Sum_{j=1..n} a(n,j)*e^j)/(1-e)^(3n+1)*M^(2n+1)/(2n+1)! = M/(1-e) - (e/(1-e)^4)*M^3/3! + ((e+9*e^2)/(1-e)^7)*M^5/5! - + ... .
%C A306557 The element a(n,n) with highest index in each row (the diagonal element) has the form Product_{j=1..n} (2*j+1)^2.
%C A306557 The derivative dKepler/dE = 1 - e*cos(E) goes to zero at E = i*arccosh(1/e) in the complex plane. Thus dKeplerInv/dM goes to infinity at M = i*(arccosh(1/e) - sqrt(1-e^2)), so that the radius of convergence of KeplerInv(e,M) is arccosh(1/e) - sqrt(1-e^2). KeplerInv(e,M) converges linearly within the circle of convergence |M| < arccosh(1/e) - sqrt(1-e^2).
%H A306557 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kepler%27s_equation">Kepler's equation</a>
%F A306557 While M = E - e*sin(E) = E*(1-e) - e*Sum_{n>=1} (-1)^n*E^(2n+1)/(2n+1)! the formal power series of the compositional inverse KeplerInv(e,M) is as above according to A111785 and A304462.
%e A306557 Matrix (regular triangle) lexicographically ascending in the rows:
%e A306557   1;
%e A306557   1,     9;
%e A306557   1,    54,     225;
%e A306557   1,   243,    4131,     11025;
%e A306557   1,  1008,   50166,    457200,     893025;
%e A306557   1,  4077,  520218,  11708154,   70301925,   108056025;
%e A306557   1, 16362, 5020623, 243313164, 3274844175, 14427513450, 18261468225;
%e A306557   ...
%Y A306557 Generated by A111785 or A304462, diagonal elements are in A001818.
%K A306557 nonn,tabl
%O A306557 0,3
%A A306557 _Herbert Eberle_, Feb 23 2019