A306559 A self-describing sequence mostly made of 1's and 0's emerging when written in English words (see the Comments section for an explanation).
1, 2, 3, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0
Offset: 1
Examples
The #1 vowel (O) and #2 vowel (E) enclose indeed ONE consonant (N); the #2 vowel (E) and #3 vowel (O) enclose indeed TWO consonants (TW); the #3 vowel (O) and #4 vowel (E) enclose indeed THREE consonants (THR); the #4 vowel (E) and #5 vowel (E) enclose indeed ZERO consonant; the #5 vowel (E) and #6 vowel (E) enclose indeed ONE consonant (Z); the #6 vowel (E) and #7 vowel (O) enclose indeed ONE consonant (R); the #7 vowel (O) and #8 vowel (O) enclose indeed ZERO consonant; etc.
Links
- Jean-Marc Falcoz, Table of n, a(n) for n = 1..28446
- Charlie Neder, Proof of the equivalence of this sequence and A039982
Crossrefs
Cf. A039982.
Comments