This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306567 #15 May 29 2024 12:15:02 %S A306567 9,99,27,99,96,99,63,99,81,91,99,195,94,295,93,291,113,189,171,992, %T A306567 159,187,187,483,988,475,153,281,181,273,279,577,297,997,567,369,333, %U A306567 363,351,994,219,465,357,663,459,461,423,192,441,965,399,999,437,126,551 %N A306567 a(n) is the largest value obtained by iterating x -> noz(x + n) starting from 0 (where noz(k) = A004719(k) omits the zeros from k). %C A306567 For any n > 0, a(n) is well defined: %C A306567 - the set of zeroless numbers (A052382) contains arbitrarily large gaps, %C A306567 - for example, for any k > 0, the interval I_k = [10^k..(10^(k+1)-1)/9-1] if free of zeroless numbers, %C A306567 - let i be such that #I_i > n, %C A306567 - let b_n be defined by b_n(0) = 0, and for any j > 0, b_n(j) = noz(b_n(j-1) + n), %C A306567 - as b_n starts below 10^i and cannot cross the gap constituted by I_i, %C A306567 - b_n is bounded (and eventually periodic), QED. %H A306567 Rémy Sigrist, <a href="/A306567/b306567.txt">Table of n, a(n) for n = 1..10000</a> %H A306567 Rémy Sigrist, <a href="/A306567/a306567.gp.txt">PARI program for A306567</a> %F A306567 Empirically, for any k >= 0: %F A306567 - a( 10^k) = 9 * 10^k + (10^k-1)/9, %F A306567 - a(2 * 10^k) = 99 * 10^k + 2 * (10^k-1)/9, %F A306567 - a(3 * 10^k) = 27 * 10^k + 3 * (10^k-1)/9, %F A306567 - a(4 * 10^k) = 99 * 10^k + 4 * (10^k-1)/9, %F A306567 - a(5 * 10^k) = 96 * 10^k + 5 * (10^k-1)/9, %F A306567 - a(6 * 10^k) = 99 * 10^k + 6 * (10^k-1)/9, %F A306567 - a(7 * 10^k) = 63 * 10^k + 7 * (10^k-1)/9, %F A306567 - a(8 * 10^k) = 99 * 10^k + 8 * (10^k-1)/9, %F A306567 - a(9 * 10^k) = 81 * 10^k + 9 * (10^k-1)/9. %e A306567 For n = 1: %e A306567 - noz(0 + 1) = 1, %e A306567 - noz(1 + 1) = 2, %e A306567 - noz(2 + 1) = 3, %e A306567 ... %e A306567 - noz(7 + 1) = 8, %e A306567 - noz(8 + 1) = 9, %e A306567 - noz(9 + 1) = noz(10) = 1, %e A306567 - hence a(1) = 9. %o A306567 (PARI) \\ See Links section. %Y A306567 See A306569 for the multiplicative variant. %Y A306567 Cf. A004719, A052382. %K A306567 nonn,look,base %O A306567 1,1 %A A306567 _Rémy Sigrist_, Feb 24 2019