cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306571 Number of ways to write n as w*(w+1) + C(x+3,4) + C(y+5,6) + C(z+7,8) with w,x,y,z nonnegative integers, where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).

Original entry on oeis.org

1, 3, 4, 4, 3, 2, 3, 6, 7, 5, 4, 4, 6, 7, 7, 6, 6, 6, 6, 5, 4, 8, 9, 6, 3, 4, 4, 6, 7, 7, 6, 8, 5, 5, 4, 8, 10, 9, 5, 5, 5, 5, 8, 10, 10, 9, 8, 7, 9, 9, 7, 8, 8, 7, 7, 6, 7, 12, 12, 8, 2, 3, 6, 11, 9, 8, 9, 7, 2, 4, 5, 8, 13, 14, 8, 6, 6, 8, 9, 9, 11, 8, 7, 7, 10, 9, 10, 11, 8, 7, 9, 11, 13, 11, 8, 5, 6, 7, 10, 10, 13
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 24 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n >= 0. In other words, each n = 0,1,2,... can be written as 2*C(w,2) + C(x,4) + C(y,6) + C(z,8) with w,x,y,z positive integers.
We have verified a(n) > 0 for all n = 0..2*10^7.
Note that 10413917 is the least positive integer not representable as w^2 + C(x,4) + C(y,6) + C(z,8) with w,x,y,z nonnegative integers.
See also A306477 for a similar conjecture.

Examples

			a(0) = 1 with 0 = 0*1 + C(3,4) + C(5,6) + C(7,8).
a(60) = 2 with 60 = 0*1 + C(6,4) + C(5,6) + C(10,8) = 5*6 + C(4,4) + C(8,6) + C(8,8).
a(220544) = 1 with 220544 = 151*152 + C(48,4) + C(14,6) + C(9,8).
a(809165) = 1 with 809165 = 295*296 + C(63,4) + C(10,6) + C(20,8).
a(16451641) = 1 with 16451641 = 2256*2257 + C(130,4) + C(12,6) + C(10,8).
		

Crossrefs

Programs

  • Mathematica
    f[m_,n_]:=f[m,n]=Binomial[m+n-1,m];
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[4n+1]];
    tab={};Do[r=0;Do[If[f[8,z]>n,Goto[cc]];Do[If[f[6,y]>n-f[8,z],Goto[bb]];Do[If[f[4,x]>n-f[8,z]-f[6,y],Goto[aa]];If[TQ[n-f[8,z]-f[6,y]-f[4,x]],r=r+1],{x,0,n-f[8,z]-f[6,y]}];Label[aa],{y,0,n-f[8,z]}];Label[bb],{z,0,n}];Label[cc];tab=Append[tab,r],{n,0,100}];Print[tab]