This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306576 #40 May 06 2024 12:00:23 %S A306576 1,3,19,179,2183,32355,562343,11198203,251297263,6275390067, %T A306576 172639089031,5189033793611,169220733646271,5951777459480931, %U A306576 224604052936701815,9053124776482735291,388198017158108201839,17645733672934447166163,847577245047341210277415 %N A306576 Expansion of 1/(1 - x - 2*x/(1 - 2*x - 3*x/(1 - 3*x - 4*x/(1 - 4*x - 5*x/(1 - ...))))), a continued fraction. %H A306576 Vaclav Kotesovec, <a href="/A306576/b306576.txt">Table of n, a(n) for n = 0..386</a> %F A306576 a(n) ~ c * d^n * n^(n+1), where d = 1 / (exp(1) * (2*log(2) - 1)) = 0.952329306865721945... and c = 1/(sqrt(2) * (2*log(2) - 1)^(3/2)) = 2.945150206105358... - _Vaclav Kotesovec_, Jul 01 2019, updated May 06 2024 %t A306576 $RecursionLimit = Infinity; nmax = 18; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-k x, 1 - k x, {k, 2, nmax + 1}]), {x, 0, nmax}], x] %Y A306576 Cf. A000311, A001147, A003319, A158882. %K A306576 nonn %O A306576 0,2 %A A306576 _Ilya Gutkovskiy_, Jun 25 2019