A306581 Lexicographically earliest sequence of distinct positive terms such that the binary representations of two consecutive terms can always been concatenated in some order, without leading zero, to produce the binary representation of a prime number.
1, 2, 3, 4, 5, 6, 11, 8, 7, 9, 13, 10, 17, 12, 25, 18, 23, 15, 14, 19, 20, 21, 26, 27, 31, 29, 16, 37, 34, 45, 22, 39, 28, 55, 46, 57, 35, 24, 43, 36, 47, 33, 32, 41, 38, 67, 30, 53, 42, 61, 40, 49, 48, 73, 50, 51, 59, 56, 69, 44, 63, 52, 77, 60, 79, 54, 65
Offset: 1
Examples
The first terms, alongside their binary representations, and the concatenation of consecutive terms, with prime numbers denoted by a star, are: n a(n) bin(a(n)) bin(a(n)a(n+1)) bin(a(n+1)a(n)) -- ---- --------- --------------- --------------- 1 1 1 110 101* 2 2 10 1011* 1110 3 3 11 11100 10011* 4 4 100 100101* 101100 5 5 101 101110 110101* 6 6 110 1101011* 1011110 7 11 1011 10111000 10001011* 8 8 1000 1000111* 1111000 9 7 111 1111001 1001111* 10 9 1001 10011101* 11011001
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Colored scatterplot of (n, a(n)) for n = 1..10000 (where the color corresponds to the parity of a(n): red for odd, blue for even)
- Rémy Sigrist, Colored scatterplot of (n, a(n)-n) for n = 1..1000000 (where the color corresponds to the parity of a(n)-n: red for odd, blue for even)
- Rémy Sigrist, Scatterplot of the first 1000000 terms of the ordinal transform of n -> a(n)-n
- Rémy Sigrist, PARI program for A306581
Programs
-
Mathematica
a = {1}; c[x_, y_] := FromDigits[Join @@ IntegerDigits[{x, y}, 2], 2]; While[Length@a < 67, j=1; While[MemberQ[a, j] || ! (PrimeQ@ c[a[[-1]], j] || PrimeQ@ c[j, a[[-1]]]), j++]; AppendTo[a, j]]; a (* Giovanni Resta, Feb 27 2019 *)
-
PARI
See Links section.
Comments