A306597 a(n) = Card({ Sum_{k=1..n}(x_k * k) : (x_k){k=1..n} is an n-tuple of nonnegative integers such that Sum{k=1..n}(x_k * T_k) = T_n }), where T_k denotes the k-th triangular number.
1, 2, 4, 6, 9, 15, 20, 27, 34, 43, 52, 63, 75, 87, 102, 117, 132, 149, 166, 185, 206, 226, 248, 271, 294, 318, 345, 373, 399, 429, 459, 489, 520, 554, 587, 623, 658, 695, 734, 772, 811, 853, 894, 936, 981, 1026, 1072, 1119, 1167, 1215, 1266, 1316, 1368, 1420
Offset: 1
Keywords
Examples
When n = 3, n*(n+1)/2 = 6. All possible ways to partition 6 into parts with triangular sizes (1, 3, 6) are: 0*1 + 0*3 + 1*6 = 6 0*1 + 2*3 + 0*6 = 6 3*1 + 1*3 + 0*6 = 6 6*1 + 0*3 + 0*6 = 6 In the above products, keep the left multiplicands and replace the right ones with their triangular roots: 0*1 + 0*2 + 1*3 = 3 0*1 + 2*2 + 0*3 = 4 3*1 + 1*2 + 0*3 = 5 6*1 + 0*2 + 0*3 = 6 Card({ 3, 4, 5, 6 }) = 4, so a(3) = 4.
Links
- Luc Rousseau, Table of n, a(n) for n = 1..150
- Luc Rousseau, C program
- Luc Rousseau, Java program (standalone version)
- Luc Rousseau, Java program (jOEIS version, github)
Programs
-
Mathematica
T[n_] := n*(n + 1)/2 R[n_] := (Sqrt[8*n + 1] - 1)/2 S[0] := 0 S[d_] := S[d] = Module[{r = R[d]}, If[IntegerQ[r], r++; r + T[r], First@TakeSmallest[ 1]@(S[#[[1]]] + S[#[[2]]] & /@ IntegerPartitions[d, {2}])]] A0[n_] := Sum[Boole[d + S[d] <= 2*n], {d, 0, n}] A[n_] := A0[T[n]] For[n = 1, n <= 150, n++, Print[n, " ", A[n]]]
Comments