cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306598 Determinant of the circulant matrix whose first column corresponds to the divisors of n.

This page as a plain text file.
%I A306598 #27 Jan 22 2022 00:08:50
%S A306598 1,-3,-8,49,-24,-960,-48,-3375,676,-8640,-120,-2247392,-168,-34560,
%T A306598 -46080,923521,-288,-28789488,-360,-54867456,-184320,-216000,-528,
%U A306598 -89384770560,15376,-423360,-512000,-438939648,-840,-558786571200,-960,-992436543,-1152000
%N A306598 Determinant of the circulant matrix whose first column corresponds to the divisors of n.
%C A306598 From _Robert Israel_, Mar 06 2019: (Start)
%C A306598 a(n) is divisible by A000203(n).
%C A306598 If n is not a square, a(n) is divisible by A000203(n)*A071324(n).
%C A306598 (End)
%H A306598 Robert Israel, <a href="/A306598/b306598.txt">Table of n, a(n) for n = 1..10000</a>
%H A306598 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_matrix">Circulant matrix</a>
%F A306598 Apparently, a(n) > 0 iff n is a square.
%F A306598 a(p) = p^2 - 1 for any prime number p.
%F A306598 a(p^2) = p^6 - 2*p^3 + 1 for any prime number p.
%F A306598 a(2^k) = A086459(k+1) for any k >= 0.
%F A306598 If p < q are primes, a(p*q) = -(p^4-1)*(q^2-1)^2. - _Robert Israel_, Mar 06 2019
%e A306598 For n = 12:
%e A306598 - the divisors of 12 are: 1, 2, 3, 4, 6, 12,
%e A306598 - the corresponding circulant matrix is:
%e A306598     [ 1 12  6  4  3  2]
%e A306598     [ 2  1 12  6  4  3]
%e A306598     [ 3  2  1 12  6  4]
%e A306598     [ 4  3  2  1 12  6]
%e A306598     [ 6  4  3  2  1 12]
%e A306598     [12  6  4  3  2  1]
%e A306598 - its determinant is -2247392,
%e A306598 - hence, a(12) = -2247392.
%p A306598 f:= proc(n) local F,d; uses numtheory, LinearAlgebra;
%p A306598   F:= sort(convert(divisors(n),list));
%p A306598   d:= nops(F);
%p A306598   Determinant(Matrix(d,d,shape=Circulant[F]))
%p A306598 end proc:
%p A306598 map(f, [$1..100]); # _Robert Israel_, Mar 06 2019
%t A306598 a[n_] := Module[{dd = Divisors[n], m, r}, m = Length[dd]; r = E^(2 Pi I/m); Product[Sum[dd[[j+1]] r^(j k), {j, 0, m-1}], {k, 0, m-1}] // FullSimplify];
%t A306598 Array[a, 100] (* _Jean-François Alcover_, Oct 17 2020 *)
%o A306598 (PARI) a(n) = my (d=divisors(n)); my (m=matrix(#d, #d, i,j, d[1+(i-j)%#d])); return (matdet(m))
%Y A306598 Cf. A027750, A086459, A177894.
%K A306598 sign,look
%O A306598 1,2
%A A306598 _Rémy Sigrist_, Feb 27 2019