This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306598 #27 Jan 22 2022 00:08:50 %S A306598 1,-3,-8,49,-24,-960,-48,-3375,676,-8640,-120,-2247392,-168,-34560, %T A306598 -46080,923521,-288,-28789488,-360,-54867456,-184320,-216000,-528, %U A306598 -89384770560,15376,-423360,-512000,-438939648,-840,-558786571200,-960,-992436543,-1152000 %N A306598 Determinant of the circulant matrix whose first column corresponds to the divisors of n. %C A306598 From _Robert Israel_, Mar 06 2019: (Start) %C A306598 a(n) is divisible by A000203(n). %C A306598 If n is not a square, a(n) is divisible by A000203(n)*A071324(n). %C A306598 (End) %H A306598 Robert Israel, <a href="/A306598/b306598.txt">Table of n, a(n) for n = 1..10000</a> %H A306598 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_matrix">Circulant matrix</a> %F A306598 Apparently, a(n) > 0 iff n is a square. %F A306598 a(p) = p^2 - 1 for any prime number p. %F A306598 a(p^2) = p^6 - 2*p^3 + 1 for any prime number p. %F A306598 a(2^k) = A086459(k+1) for any k >= 0. %F A306598 If p < q are primes, a(p*q) = -(p^4-1)*(q^2-1)^2. - _Robert Israel_, Mar 06 2019 %e A306598 For n = 12: %e A306598 - the divisors of 12 are: 1, 2, 3, 4, 6, 12, %e A306598 - the corresponding circulant matrix is: %e A306598 [ 1 12 6 4 3 2] %e A306598 [ 2 1 12 6 4 3] %e A306598 [ 3 2 1 12 6 4] %e A306598 [ 4 3 2 1 12 6] %e A306598 [ 6 4 3 2 1 12] %e A306598 [12 6 4 3 2 1] %e A306598 - its determinant is -2247392, %e A306598 - hence, a(12) = -2247392. %p A306598 f:= proc(n) local F,d; uses numtheory, LinearAlgebra; %p A306598 F:= sort(convert(divisors(n),list)); %p A306598 d:= nops(F); %p A306598 Determinant(Matrix(d,d,shape=Circulant[F])) %p A306598 end proc: %p A306598 map(f, [$1..100]); # _Robert Israel_, Mar 06 2019 %t A306598 a[n_] := Module[{dd = Divisors[n], m, r}, m = Length[dd]; r = E^(2 Pi I/m); Product[Sum[dd[[j+1]] r^(j k), {j, 0, m-1}], {k, 0, m-1}] // FullSimplify]; %t A306598 Array[a, 100] (* _Jean-François Alcover_, Oct 17 2020 *) %o A306598 (PARI) a(n) = my (d=divisors(n)); my (m=matrix(#d, #d, i,j, d[1+(i-j)%#d])); return (matdet(m)) %Y A306598 Cf. A027750, A086459, A177894. %K A306598 sign,look %O A306598 1,2 %A A306598 _Rémy Sigrist_, Feb 27 2019