cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A306690 Number of ways to write n as u^4 + (v*(v+1)/2)^2 + (x*(3x+1)/2)^2 + (y*(5y+1)/2)^2 + (z*(9z+1)/2)^2, where u and v are nonnegative integers and x,y,z are integers.

Original entry on oeis.org

1, 3, 3, 1, 2, 5, 4, 1, 1, 4, 6, 4, 1, 3, 5, 2, 2, 6, 6, 3, 5, 8, 6, 2, 2, 9, 14, 9, 2, 9, 14, 7, 2, 5, 10, 12, 9, 6, 8, 7, 5, 9, 10, 6, 4, 10, 10, 4, 1, 4, 12, 11, 5, 4, 10, 6, 5, 5, 5, 8, 8, 7, 8, 5, 1, 7, 11, 5, 3, 5, 8, 5, 3, 1, 6, 10, 4, 4, 6, 4, 1, 8, 8, 8, 6, 7, 11, 6, 1, 2, 10, 8, 3, 2, 7, 6, 1, 4, 8, 9, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 05 2019

Keywords

Comments

Conjecture 1: a(n) > 0 for any nonnegative integer n.
Conjecture 2: Each n = 0,1,2,... can be written as f(u,v,x,y,z) with u,v,x,y,z integers, where f is any of the following polynomials: u^4 + (v*(v+1)/2)^2 + (x*(3x+1)/2)^2 + (y*(5y+1)/2)^2 + (z*(5z+3)/2)^2, u^4 + (v*(v+1)/2)^2 + (x*(3x+1)/2)^2 + (y*(5y+1)/2)^2 + (z*(3z+2))^2, (u*(u+1)/2)^2 + (v*(3v+1)/2)^2 + (x*(5x+1)/2)^2 + (y*(5y+3)/2)^2 + (z*(3z+2))^2, (u*(u+1)/2)^2 + (v*(3v+1)/2)^2 + (x*(5x+1)/2)^2 + (y*(5y+3)/2)^2 + (z*(4z+3))^2, (u*(u+1)/2)^2 + (v*(3v+1)/2)^2 + (x*(5x+1)/2)^2 + (y*(5y+3)/2)^2 + (z*(9z+7)/2)^2.
We have verified Conjectures 1 and 2 for n up to 2*10^6 and 10^6 respectively.

Examples

			a(8) = 1 with 8 = 0^4 + (0*(0+1)/2)^2 + (1*(3*1+1)/2)^2 + ((-1)*(5*(-1)+1)/2)^2 + (0*(9*0+1)/2)^2.
a(2953) = 1 with 2953 = 6^4 + (8*(8+1)/2)^2 + (0*(3*0+1)/2)^2 + (0*(5*0+1)/2)^2 + (2*(9*2+1)/2)^2.
a(8953) = 1 with 8953 = 2^4 + (7*(7+1)/2)^2 + (6*(3*6+1)/2)^2 + ((-1)*(5*(-1)+1)/2)^2 + ((-4)*(9*(-4)+1)/2)^2.
		

Crossrefs

Programs

  • Mathematica
    t[x_]:=t[x]=(x(x+1)/2)^2; f[x_]:=f[x]=(x(5x+1)/2)^2; g[x_]:=g[x]=(x(9x+1)/2)^2; SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; PQ[n_]:=PQ[n]=SQ[n]&&SQ[24*Sqrt[n]+1];
    tab={};Do[r=0;Do[If[PQ[n-k^4-t[x]-f[y]-g[z]],r=r+1],{k,0,n^(1/4)},{x,0,(Sqrt[8*Sqrt[n-k^4]+1]-1)/2},{y,-Floor[(Sqrt[40*Sqrt[n-k^4-t[x]]+1]+1)/10],(Sqrt[40*Sqrt[n-k^4-t[x]]+1]-1)/10},{z,-Floor[(Sqrt[72*Sqrt[n-k^4-t[x]-f[y]]+1]+1)/18],(Sqrt[72*Sqrt[n-k^4-t[x]-f[y]]+1]-1)/18}];tab=Append[tab,r],{n,0,100}];Print[tab]
Showing 1-1 of 1 results.