cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306607 The bottom entry in the difference table of the binary digits of n.

This page as a plain text file.
%I A306607 #36 Mar 10 2019 23:32:23
%S A306607 0,1,1,0,1,2,-1,0,1,0,4,3,-2,-3,1,0,1,2,-3,-2,7,8,3,4,-3,-2,-7,-6,3,4,
%T A306607 -1,0,1,0,6,5,-9,-10,-4,-5,11,10,16,15,1,0,6,5,-4,-5,1,0,-14,-15,-9,
%U A306607 -10,6,5,11,10,-4,-5,1,0,1,2,-5,-4,16,17,10,11,-19
%N A306607 The bottom entry in the difference table of the binary digits of n.
%C A306607 By convention, a(0) = 0.
%C A306607 For any n > 0: let (b_0, ..., b_w) be the binary representation of n:
%C A306607 - b_w = 1, and for any k = 0..w, 0 <= b_k <= 1,
%C A306607 - n = Sum_{k = 0..w} b_k * 2^k,
%C A306607 - a(n) is the unique value remaining after taking successively the first differences of (b_0, ..., b_w) w times.
%C A306607 From _Robert Israel_, Mar 07 2019: (Start)
%C A306607   If n is odd then f(A030101(n)) = (-1)^A000523(n)*f(n).
%C A306607   In particular, if n is in A048701 then a(n)=0.
%C A306607   a(n) == 1 (mod A014963(A000523(n))) if n is even,
%C A306607   a(n) == 0 (mod A014963(A000523(n))) if n is odd. (End)
%H A306607 Robert Israel, <a href="/A306607/b306607.txt">Table of n, a(n) for n = 0..10000</a>
%F A306607 a(2^k) = 1 for any k >= 0.
%F A306607 a(2^k-1) = 0 for any k > 1.
%F A306607 a(3*2^k) = -k for any k >= 0.
%F A306607 a(n) = Sum_{k=0..A000523(n)} binomial(A000523(n), k)*(-1)^k*A030302(n,k). - _David A. Corneth_, Mar 07 2019
%F A306607 G.f.: 1/(x-1)*Sum_{k>=0}(x^(2^(k+1))-x^(2^k) + x^(2^k)/(x^(2^k)+1)*Sum_{m>=k+1}(binomial(m,k)*(-1)^(m-k)*(x^(2^(m+1))-x^(2^m)))). - _Robert Israel_, Mar 07 2019
%e A306607 For n = 42:
%e A306607 - the binary representation of 42 is "101010",
%e A306607 - the corresponding difference table is:
%e A306607    0   1   0   1   0   1
%e A306607      1  -1   1  -1   1
%e A306607       -2   2  -2   2
%e A306607          4  -4   4
%e A306607           -8   8
%e A306607             16
%e A306607 - hence a(42) = 16.
%p A306607 f:= proc(n) local L;
%p A306607   L:= convert(n,base,2);
%p A306607   while nops(L) > 1 do
%p A306607     L:= L[2..-1]-L[1..-2]
%p A306607   od;
%p A306607   op(L)
%p A306607 end proc:
%p A306607 map(f, [$0..100]); # _Robert Israel_, Mar 07 2019
%t A306607 a[n_] := NestWhile[Differences, Reverse[IntegerDigits[n, 2]], Length[#] > 1 &][[1]]; Array[a, 100, 0] (* _Amiram Eldar_, Mar 08 2019 *)
%o A306607 (PARI) a(n) = if (n, my (v=Vecrev(binary(n))); while (#v>1, v=vector(#v-1, k, (v[k+1]-v[k]))); v[1], 0)
%o A306607 (PARI) a(n) = my(b = binary(n), s = -1); sum(i = 1, #b, s=-s; binomial(#b-1, i-1) * b[i] * s) \\ _David A. Corneth_, Mar 07 2019
%Y A306607 Cf. A000523, A007088, A030101, A030190, A030302, A048701, A014963, A187202, A241494.
%K A306607 sign,base,look
%O A306607 0,6
%A A306607 _Rémy Sigrist_, Feb 28 2019