This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306613 #30 May 12 2019 08:32:11 %S A306613 64,900,26,1410,304,2096,544,668,136,4376,112,1429,2310,2701,1120, %T A306613 44604,3908,64,103,2520,1530,4939,3666,7883,1097,11755,21780,103,784, %U A306613 1003,15660,1849,646,10866,15554,3126,4416,64,4512,4520,11356,5720,988,77108,28080,10930 %N A306613 First differences of A063990 (amicable numbers arranged in increasing order). %C A306613 a(n) is the difference between the n-th and (n+1)-th amicable numbers when ordered by increasing value. %C A306613 For 1 <= k <= 8, a(2k-1) is the difference between the larger and the smaller terms of the k-th amicable pair, and for 1 <= k <= 8, a(2k) is the difference between the smaller term of the (k+1)-th pair and the larger term of the k-th pair. Beginning with the 9th pair (63020,76084), the pairs ordered by their first element are no longer adjacent. - _Bernard Schott_, Mar 09 2019 %F A306613 a(n) = A063990(n+1) - A063990(n). - _Michel Marcus_, Apr 08 2019 %e A306613 a(2) = amicable(3) - amicable(2) = 1184 - 284 = 900. %e A306613 From _Bernard Schott_, Mar 10 2019: (Start) %e A306613 a(1) = 284 - 220 = 64 is the difference between the larger and the smaller terms of the first amicable pair. %e A306613 a(4) = 2620 - 1210 = 1410 is the difference between the smaller term of the third amicable pair and the larger term of the second amicable pair. (End) %o A306613 (MATLAB) %o A306613 clear %o A306613 clc %o A306613 A = zeros(100000,1); %o A306613 parfor n = 1:1:100000 %o A306613 f = find(rem(n, 1:floor(sqrt(n))) == 0); %o A306613 f = unique([1, n, f, fix(n./f)]); %o A306613 A(n) = sum(f) - n; %o A306613 end %o A306613 D = []; %o A306613 d = 1; %o A306613 for a = 1:1:100000 %o A306613 for b = 1:1:100000 %o A306613 if A(a) == b && A(b) == a && a~=b %o A306613 D(d) = a; %o A306613 d = d+1; %o A306613 end %o A306613 end %o A306613 end %o A306613 D %o A306613 difference = diff(D) %Y A306613 Cf. A063990 (amicable numbers), A306612. %Y A306613 Cf. A002025, A002046. %Y A306613 Cf. A066539 (difference between larger and smaller terms of n-th amicable pair). %Y A306613 Cf. A139228 (first differences of perfect numbers). %K A306613 nonn %O A306613 1,1 %A A306613 _Conor Coons_, Feb 28 2019 %E A306613 More terms from _Michel Marcus_, Mar 09 2019