A306617 Decimal expansion of a constant related to the asymptotics of A324425.
8, 2, 8, 8, 5, 9, 5, 7, 9, 6, 6, 9, 2, 7, 9, 2, 8, 6, 6, 9, 7, 2, 2, 9, 0, 2, 0, 7, 7, 5, 1, 0, 3, 0, 2, 6, 7, 6, 9, 1, 0, 5, 7, 5, 5, 9, 7, 7, 1, 2, 1, 1, 4, 5, 2, 4, 4, 0, 4, 0, 3, 3, 1, 7, 9, 5, 7, 1, 8, 3, 4, 3, 0, 2, 2, 1, 4, 7, 1, 8, 3, 7, 7, 6, 7, 1, 1, 3, 1, 1, 8, 9, 2, 7, 8, 7, 3, 0, 4, 0, 5, 4, 9, 3, 0, 9
Offset: 0
Examples
0.828859579669279286697229020775103026769105755977121145244040331795...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 [Terms beyond 79 were computed using Ulrich Neumann's program]
- Mathematica Stack Exchange, How to compute this integral with a better precision ?
Crossrefs
Cf. A324425.
Programs
-
Maple
evalf(exp(integrate(log(x^2 + y^2 + z^2), x = 0..1, y = 0..1, z = 0..1)), 20); evalf(exp(integrate(-2 + 2*sqrt(y^2 + z^2) * arctan(1/sqrt(y^2 + z^2)) + log(1 + y^2 + z^2), y = 0..1, z = 0..1)), 20);
-
Mathematica
ixr = Exp[Integrate[1/3 (Log[1 + Sec[fi]^2] + (-7 + 3 Log[1 + Sec[fi]^2]) Sec[fi]^2 + 2 (Pi - 2 ArcTan[Sec[fi]]) Sec[fi]^3), {fi, 0, Pi/4}]]; Chop[N[ixr, 120]] (* A program by Ulrich Neumann added by Vaclav Kotesovec, Mar 03 2019. The calculation takes several minutes. *)
-
PARI
exp(intnum(z=0, 1 ,intnum(y=0, 1, intnum(x=0, 1, log(x^2 + y^2 + z^2)))))
-
PARI
exp(intnum(z=0, 1 ,intnum(y=0, 1, -2 + 2*sqrt(y^2 + z^2) * atan(1/sqrt(y^2 + z^2)) + log(1 + y^2 + z^2))))
Formula
Equals limit_{n->infinity} (A324425(n)^(1/n^3))/n^2.
Extensions
More terms computed by Ulrich Neumann added by Vaclav Kotesovec, Mar 03 2019
Comments