cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306620 Decimal expansion of a constant related to the asymptotics of A324437.

This page as a plain text file.
%I A306620 #13 Dec 07 2023 10:52:09
%S A306620 2,3,4,5,1,5,8,4,4,5,1,4,0,4,2,7,9,2,8,1,8,0,7,1,4,3,3,1,7,5,0,0,5,1,
%T A306620 8,6,6,0,6,9,6,2,9,3,9,4,4,9,6,1,0,3,9,5,5,3,2,4,5,8,2,3,6,8,3,6,6,1,
%U A306620 0,9,9,4,1,7,0,2,5,3,0,3,2,4,1,6,1,4,5,1,7,7,7,4,7,0,5,4,3,0,2,6,0,4,9,6,6,0
%N A306620 Decimal expansion of a constant related to the asymptotics of A324437.
%H A306620 Vaclav Kotesovec, <a href="/A306620/b306620.txt">Table of n, a(n) for n = 0..158</a>
%F A306620 Equals limit_{n->oo} A324437(n) / (2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1)).
%F A306620 Equals limit_{n->oo} n*(Product_{i=1..n, j=1..n} ((i/n)^4 + (j/n)^4)) / exp(6*n + n*(n+1)*Integral_{x=0..1, y=0..1} log(x^4 + y^4) dy dx). - _Vaclav Kotesovec_, Dec 04 2023
%e A306620 0.234515844514042792818071433175005186606962939449610395532458236836610994170253...
%Y A306620 Cf. A324437, A367834.
%K A306620 nonn,cons
%O A306620 0,1
%A A306620 _Vaclav Kotesovec_, Mar 01 2019