cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306626 Numbers that set a record for occurrences as longest side of a primitive Heronian triangle.

This page as a plain text file.
%I A306626 #25 Nov 05 2023 15:22:54
%S A306626 1,5,13,17,37,52,65,85,119,125,145,221,325,481,697,725,1025,1105,1625,
%T A306626 1885,2465,2665,3145,5525,6409,15457,15725,26129,27625,38425,40885,
%U A306626 45305,58565,67405,69745,83317,128945,160225,204425,226525,237133,292825,348725
%N A306626 Numbers that set a record for occurrences as longest side of a primitive Heronian triangle.
%C A306626 Congruent triangles are identified, that is to say mirror images are not distinguished.
%C A306626 The corresponding numbers of occurrences are 0, 1, 2, 3, 5, 6, 8, ...
%C A306626 A239246(k) gives the number of occurrences for any integer k.
%C A306626 The qualifier "primitive" means that we count only triangles whose sides have a gcd of 1. The equivalent sequence without this qualification is A322105.
%C A306626 The terms that are common with A322105 are 1, 5, 13, 52, 65, 145, 325, 1105, 5525, ...
%C A306626 The odd prime factors of the terms are almost all congruent to 1 modulo 4. a(9) = 119 = 7 * 17 provides the only exception in the first 50 terms. [updated by _Peter Munn_, Dec 04 2019]
%H A306626 Ray Chandler, <a href="/A306626/b306626.txt">Table of n, a(n) for n = 1..67</a> (terms < 6*10^6; first 50 terms from Giovanni Resta)
%e A306626 13 is in the sequence since it occurs in a record number of 2 triangles of side lengths {5, 12, 13} and {10, 13, 13}.
%e A306626 The side lengths, a(n), and their corresponding record numbers of occurrences, A239246(a(n)), are:
%e A306626 n       a(n)     prime factorization of a(n)  occurrences
%e A306626 1          1     -                               0
%e A306626 2          5     5                               1
%e A306626 3         13     13                              2
%e A306626 4         17     17                              3
%e A306626 5         37     37                              5
%e A306626 6         52     2^2 * 13                        6
%e A306626 7         65     5 * 13                          8
%e A306626 8         85     5 * 17                          9
%e A306626 9        119     7 * 17                         10
%e A306626 10       125     5^3                            13
%e A306626 11       145     5 * 29                         20
%e A306626 12       221     13 * 17                        30
%e A306626 13       325     5^2 * 13                       37
%e A306626 14       481     13 * 37                        42
%e A306626 15       697     17 * 41                        50
%e A306626 16       725     5^2 * 29                       54
%e A306626 17      1025     5^2 * 41                       63
%e A306626 18      1105     5 * 13 * 17                    90
%e A306626 19      1625     5^3 * 13                       93
%e A306626 20      1885     5 * 13 * 29                   106
%e A306626 21      2465     5 * 17 * 29                   116
%e A306626 22      2665     5 * 13 * 41                   134
%e A306626 23      3145     5 * 17 * 37                   178
%e A306626 24      5525     5^2 * 13 * 17                 277
%e A306626 25      6409     13 * 17 * 29                  373
%e A306626 26     15457     13 * 29 * 41                  396
%e A306626 27     15725     5^2 * 17 * 37                 463
%t A306626 okQ[x_, y_, z_] := GCD[x, y, z]==1 && If[x + y <= z, False, Module[{s = (x + y + z)/2}, IntegerQ[ Sqrt[s(s-x)(s-y)(s-z)]]] ]; a[n_] := Module[{num = 0}, Do[Do[If[okQ[x, y, n], num++], {x, 1, y}], {y, 1, n}]; num]; amax=-1; s={}; Do[a1=a[n]; If[a1 > amax, AppendTo[s, n]; amax=a1], {n, 1, 100}]; s
%Y A306626 Cf. A096467, A120130, A239246, A322105.
%K A306626 nonn
%O A306626 1,2
%A A306626 _Amiram Eldar_ and _Peter Munn_, Mar 01 2019
%E A306626 a(28)-a(43) from _Giovanni Resta_, Nov 07 2019