cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306638 a(n) is the norm of the fundamental unit of binary quadratic forms with discriminant D = A079896(n).

This page as a plain text file.
%I A306638 #35 Jun 11 2025 14:25:06
%S A306638 -1,-1,1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,
%T A306638 1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,1,-1,1,1,1,1,
%U A306638 1,-1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1
%N A306638 a(n) is the norm of the fundamental unit of binary quadratic forms with discriminant D = A079896(n).
%C A306638 The fundamental unit of binary quadratic forms with discriminant D is the number (x_1 + (y_1)*sqrt(D))/2, where (x_1,y_1) is the smallest solution to x^2 - D*y^2 = +-4. Each term is either -1 or 1 depending on whether (x_1)^2 - D*(y_1)^2 = -4 or 4.
%C A306638 All solutions to x^2 - D*y^2 = +-4 are given by the identity (x_n + (y_n)*sqrt(D))/2 = ((x_1 + (y_1)*sqrt(D))/2)^n.
%C A306638 The discriminants D corresponding to (x_1)^2 - D*(y_1)^2 = -4 are listed in A226696.
%D A306638 D. A. Buell, Binary Quadratic Forms, Springer, 1989, Sections 3.2 and 3.3, pp. 31-48.
%H A306638 Robin Visser, <a href="/A306638/b306638.txt">Table of n, a(n) for n = 1..10000</a>
%F A306638 a(n) = -1 if D = A079896(n) is in A226696, otherwise 1.
%e A306638 Fundamental units and their norms for the first 15 discriminants in the form (X + Y*sqrt(D))/2 (N = (X^2 - D*Y^2)/4 are the corresponding norms) are:
%e A306638    D |  X |  Y |  N
%e A306638    5 |  1 |  1 | -1
%e A306638    8 |  2 |  1 | -1
%e A306638   12 |  4 |  1 |  1
%e A306638   13 |  3 |  1 | -1
%e A306638   17 |  8 |  2 | -1
%e A306638   20 |  4 |  1 | -1
%e A306638   21 |  5 |  1 |  1
%e A306638   24 | 10 |  2 |  1
%e A306638   28 | 16 |  3 |  1
%e A306638   29 |  5 |  1 | -1
%e A306638   32 |  6 |  1 |  1
%e A306638   33 | 46 |  8 |  1
%e A306638   37 | 12 |  2 | -1
%e A306638   40 |  6 |  1 | -1
%e A306638   41 | 64 | 10 | -1
%o A306638 (PARI) b(D) = for(n=1, oo, if(issquare(D*n^2-4), return(-1)); if(issquare(D*n^2+4), return(1)))
%o A306638 for(n=2, 200, if(n%4 <= 1 && !issquare(n), print1(b(n), ", ")))
%o A306638 (Julia) using Nemo
%o A306638 function b(D)
%o A306638     for j in 1:10000
%o A306638         issquare(D*j^2 - 4) && return -1
%o A306638         issquare(D*j^2 + 4) && return 1
%o A306638     end
%o A306638 0 end
%o A306638 F = findall(n -> ZZ(n) % 4 <= 1 && !issquare(ZZ(n)), 1:100)
%o A306638 map(n -> b(ZZ(n)), F) |> println # _Peter Luschny_, Mar 08 2019
%Y A306638 Cf. A079896, A226696.
%Y A306638 A014077 is a subsequence listing the corresponding values for only fundamental discriminants (A003658).
%K A306638 sign
%O A306638 1,1
%A A306638 _Jianing Song_, Mar 02 2019
%E A306638 Offset changed to 1 by _Robin Visser_, Jun 09 2025