This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306655 #30 Sep 08 2022 08:46:21 %S A306655 1,2,18,468,9360,10880,79360,84480,387072,777216,3801600,7282688, %T A306655 15037440,17418240,27067392,65544192,752903424,1218032640,4227842304, %U A306655 4737761280,6410638080,11949932544,19327057920,26372530800,37645171200,224956569600,243520929792,876611248128 %N A306655 Numbers n such that lcm(sigma(n), n) = tau(n) * sigma(n) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of divisors of k (A000005). %C A306655 Numbers n such that A009242(n) = A000005(n) * A000203(n) = A064840(n). %C A306655 Also numbers n such that A017666(n) = denominator(sigma(n)/n) = tau(n) = A000005(n). %C A306655 a(29) > 10^12. - _Giovanni Resta_, Mar 04 2019 %e A306655 18 is a term because lcm(sigma(18), 18) = lcm(39, 18) = 234 = tau(18) * sigma(18) = 6 * 39. %t A306655 Select[Range[1000000], LCM[DivisorSigma[1, #], #] == DivisorSigma[0, #] * DivisorSigma[1, #]&] (* _Vaclav Kotesovec_, Mar 04 2019 *) %o A306655 (Magma) [n: n in [1..1000000] | LCM(SumOfDivisors(n), n) eq NumberOfDivisors(n)* SumOfDivisors(n)] %o A306655 (PARI) isok(n) = my(sn = sigma(n)); lcm(sn, n) == sn*numdiv(n); \\ _Michel Marcus_, Mar 04 2019 %Y A306655 Cf. A000005, A000203, A009242, A064840. %Y A306655 Cf. A069810 (gcd(sigma(n), n) = tau(n)). %K A306655 nonn %O A306655 1,2 %A A306655 _Jaroslav Krizek_, Mar 03 2019 %E A306655 a(13)-a(16) from _Vaclav Kotesovec_, Mar 04 2019 %E A306655 a(17) from _Daniel Suteu_, Mar 04 2019 %E A306655 a(18)-a(28) from _Giovanni Resta_, Mar 04 2019