This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306676 #12 May 03 2019 19:24:00 %S A306676 1,2,3,5,5,8,9,11,13,12,18,17,21,27,30,28,30,38,38,43,56,53,59,59,56, %T A306676 64,79,85,100,106,79,90,96,115,102,123,124,130,144,147,152,177,161, %U A306676 188,199,225,193,175,195,228,248,247,280,259,267,277,288,324 %N A306676 Number of distinct acute triangles with prime sides and largest side = prime(n). %e A306676 For n=3, prime(n)=5. Acute triangles: {2,5,5}, {3,5,5}, {5,5,5} (Total=3=a(3)). %e A306676 For n=4, prime(n)=7. Acute triangles: {2,7,7}, {3,7,7}, {5,5,7}, {5, 7, 7}, {7, 7, 7} (Total=5=a(4)). %p A306676 #nType=1 for acute triangles, nType=2 for obtuse triangles %p A306676 #nType=0 for both triangles %p A306676 CountPrimeTriangles := proc (n, nType := 1) %p A306676 local aa, oo, j, k, sg, a, b, c, tt, lAcute; %p A306676 aa := {}; oo := {}; %p A306676 a := ithprime(n); %p A306676 for j from n by -1 to 1 do %p A306676 b := ithprime(j); %p A306676 for k from j by -1 to 1 do %p A306676 c := ithprime(k); %p A306676 if a < b+c and abs(b-c) < a and b < c+a and abs(c-a) < b and c < a+b and abs(a-b) < c then %p A306676 lAcute := evalb(0 < b^2+c^2-a^2); %p A306676 tt := sort([a, b, c]); %p A306676 if lAcute then aa := {op(aa), tt} else oo := {op(oo), tt} end if %p A306676 end if %p A306676 end do %p A306676 end do; %p A306676 return sort(`if`(nType = 1, aa, `if`(nType = 2, oo, `union`(aa, oo)))) %p A306676 end proc: %Y A306676 Cf. A306673, A306674, A306677, A306678. %K A306676 nonn %O A306676 1,2 %A A306676 _César Eliud Lozada_, Mar 04 2019