This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306687 #27 Jul 31 2019 21:09:53 %S A306687 1,4,26,9,92,474,16,240,1704,8084,25,520,4879,29560,134450,36,994, %T A306687 11928,89928,498140,2208612,49,1736,25956,238440,1580810,8265432, %U A306687 36024884,64,2832,51648,568128,4442768,27055808,135873360,584988840,81,4380,95733,1242648,11320595,79443000,455434875,2220096240,9470766690 %N A306687 Triangular array read by rows: The sum of squares of the number of common points in all pairs of lattice paths from (0,0) to (x,y), for 0 <= y <= x (the unnormalized second moment). %F A306687 T(x,y) = (x+y+1) * binomial(x+y+2,x+1) * binomial(x+y,x) - binomial(2*x+2*y+2,2*x+1) / 2. %e A306687 T(1,1) = 26, because the two lattice paths are DR and RD. (DR,DR) and (RD,RD) have three common points, (DR,RD) and (RD,DR) have two common points, and 2*3^2+2*2^2 = 26. - _Charlie Neder_, Jun 26 2019 %e A306687 The triangle begins: %e A306687 1, %e A306687 4, 26, %e A306687 9, 92, 474, %e A306687 16, 240, 1704, 8084, %e A306687 25, 520, 4879, 29560, 134450, %e A306687 ... %o A306687 (PARI) a(x,y) = (x+y+1)*binomial(x+y+2,x+1)*binomial(x+y,x)-binomial(2*x+2*y+2,2*x+1)/2; %o A306687 for (n=0, 10, for (k=0, n, print1(a(n,k), ", ")); print) \\ _Michel Marcus_, Apr 08 2019 %Y A306687 Lower triangle of the square array A324010. %K A306687 nonn,easy,tabl %O A306687 0,2 %A A306687 _Günter Rote_, Mar 05 2019