This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306693 #13 Jul 12 2019 17:07:35 %S A306693 1,2,12,12,240,12,3360,24,36,240,5280,12,6240,3360,240,240,8160,36, %T A306693 9120,240,3360,5280,11040,24,21600,6240,4320,3360,13920,240,14880,480, %U A306693 5280,8160,3360,36,17760,9120,6240,240,19680,3360,20640,5280,720,11040,22560 %N A306693 a(n) is the least strongly refactorable multiple of n if any, or a(n) = -1 otherwise. %C A306693 Strongly refactorable numbers correspond to A141586. %C A306693 Is a(n) > 0 for any n > 0 ? %H A306693 Rémy Sigrist, <a href="/A306693/b306693.txt">Table of n, a(n) for n = 1..10000</a> %H A306693 Rémy Sigrist, <a href="/A306693/a306693.png">Colored logarithmic scatterplot of the first 100000 terms</a> (where the color is function of A000005(n)) %F A306693 a(A141586(n)) = A141586(n) for any n > 0. %e A306693 For n = 3: %e A306693 - the divisors of 3 are: 1, 3, %e A306693 - the corresponding numbers of divisors are: 1, 2, %e A306693 - 2 does not divide 3, %e A306693 - the divisors of 2*3 are: 1, 2, 3, 6, %e A306693 - the corresponding numbers of divisors are: 1, 2, 2, 4, %e A306693 - 4 does not divide 2*3, %e A306693 - the divisors of 2*2*3 are: 1, 2, 3, 4, 6, 12, %e A306693 - the corresponding numbers of divisors are: 1, 2, 2, 3, 4, 6, %e A306693 - they all divide 2*2*3, %e A306693 - hence a(3) = 2*2*3 = 12. %o A306693 (PARI) a(n) = while (1, my (m=n); fordiv (m, d, m=lcm(m, numdiv(d))); if (n==m, return (n), n=m)) %Y A306693 See A306645 for a similar sequence. %Y A306693 Cf. A000005, A141586. %K A306693 nonn %O A306693 1,2 %A A306693 _Rémy Sigrist_, Mar 05 2019