cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306699 Periods of A265165(k) mod n.

Original entry on oeis.org

2, 12, 8, 1, 12, 84, 8, 36, 2, 1, 24, 104, 84, 12, 16, 544, 36, 1, 8, 84, 2, 1012, 24, 1, 104, 108, 168, 1, 12, 1, 32, 12, 544, 84, 72, 2664, 2, 312, 8, 1, 84, 3612, 8, 36, 1012, 4324, 48, 588, 2, 1632, 104, 5512, 108, 1, 168, 12, 2, 1, 24, 1, 2, 252, 64, 104, 12, 2948, 544, 3036, 84, 1, 72, 10512, 2664
Offset: 2

Views

Author

Cyril Banderier, Mar 05 2019

Keywords

Comments

Let b(k) be the sequence A265165(k).
a(n) = period({b(k) mod n}) = smallest p > 0 such that b(k+p) = b(k) mod n (for all large enough k).
The sequences b(k) and a(n) were introduced in the Banderier-Baril-Moreira article, they have many noteworthy arithmetical properties (proven in the Banderier-Luca article).

Examples

			A265165(k) mod 15 = (10,5,10,10,0,10,5,10,5,5,0,5)... and this pattern of length 12 repeats, therefore a(15) = 12.
		

Crossrefs

Formula

The Banderier-Luca article proves the following properties:
a(n) = 1 iff n is a product of primes in 0,1,4 mod 5.
a(n) = 2 iff n/2 is a product of primes in 0,1,4 mod 5.
If a(n) is not 1, then it is an even number.
For any prime p, a(p) | 2 p (p-1).
For any prime p not in 0,1,4 mod 5, (and p^r <> 4), a(p^r) = p^r a(p).
a(n) is an "lcm-multiplicative" sequence: a(n1*n2) = lcm(a(n1), a(n2)) (for n1,n2 coprime), this implies that if n = p1^e1 ... pk^ek (factorization in distinct primes) then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).