cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306714 Permanent of the circulant matrix whose first row is given by the binary expansion of n.

This page as a plain text file.
%I A306714 #32 Jan 23 2024 17:39:53
%S A306714 0,1,1,2,1,2,2,6,1,2,4,9,2,9,9,24,1,2,2,13,2,13,13,44,2,13,13,44,13,
%T A306714 44,44,120,1,2,4,20,8,17,17,80,4,17,36,82,17,80,82,265,2,20,17,80,17,
%U A306714 82,80,265,20,80,82,265,80,265,265,720,1,2,2,31,2,24,24
%N A306714 Permanent of the circulant matrix whose first row is given by the binary expansion of n.
%H A306714 Alois P. Heinz, <a href="/A306714/b306714.txt">Table of n, a(n) for n = 0..8191</a>
%H A306714 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_matrix">Circulant matrix</a>
%H A306714 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permanent_(mathematics)">Permanent (mathematics)</a>
%H A306714 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A306714 a(n) = 1 <=> n in { A000079 }.
%F A306714 a(n) = floor(log_2(2n))! for n in { A126646 }.
%F A306714 a(A000225(n)) = A000142(n) for n >= 1.
%F A306714 a(A000051(n)) = A040000(n).
%F A306714 a(A007283(n)) = A007395(n+1).
%e A306714 The circulant matrix for n = 23 = 10111_2 is
%e A306714   [1 0 1 1 1]
%e A306714   [1 1 0 1 1]
%e A306714   [1 1 1 0 1]
%e A306714   [1 1 1 1 0]
%e A306714   [0 1 1 1 1] and has permanent 44, thus a(23) = 44.
%e A306714 a(10) = 4 != a(12) = 2 although 10 = 1010_2 and 12 = 1100_2 have the same number of 0's and 1's.
%p A306714 a:= n-> (l-> LinearAlgebra[Permanent](Matrix(nops(l),
%p A306714          shape=Circulant[l])))(convert(n, base, 2)):
%p A306714 seq(a(n), n=0..100);
%Y A306714 Cf. A000051, A000079, A000142, A000225, A007283, A007395, A008305, A040000, A113473, A126646, A306595.
%K A306714 nonn,base
%O A306714 0,4
%A A306714 _Alois P. Heinz_, Mar 05 2019