A306717 Square array T(n, k) of positive integers, n > 0, k > 0, read by antidiagonals, filled the greedy way, such that for any i >= 0 and j >= 0 with i + j > 0, no three terms T(n, k), T(n+i, k+j), T(n+2*i, k+2*j) form an arithmetic progression.
1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 3, 1, 1, 3, 2, 4, 4, 4, 5, 2, 1, 2, 5, 4, 4, 1, 4, 5, 4, 2, 2, 4, 5, 4, 1, 1, 1, 7, 2, 4, 3, 4, 2, 7, 1, 1, 2, 1, 2, 5, 4, 5, 5, 4, 5, 2, 1, 2, 1, 2, 5, 1, 5, 5, 4, 5, 5
Offset: 1
Links
- Rémy Sigrist, Colored representation of T(n, k) for n = 1..1000 and k = 1..1000 (where the hue is function of T(n, k))
- Rémy Sigrist, C++ program for A306717
Crossrefs
Cf. A229037.
Formula
T(n, k) = T(k, n).
T(n, 1) = T(n, 2) = A229037(n).
Comments