This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306724 #49 Oct 07 2023 08:45:54 %S A306724 2,14,3,170,3570,592922491,17194752239,498892319051,14467877252479, %T A306724 421652049419104,12227909433154016,377536703748630244, %U A306724 926952707565364023467,1485824943636552705389704010031591742370238670767627108613,18031470774665264926975299618474551942701594055200456829621877,219559123426400144842876467461078524942414020727022446946702813568 %N A306724 Least number k > 1 such that A062354(k) is an n-th power, where A062354 is the product of sigma (A000203) and phi (A000010). %C A306724 10^70 < a(17) <= 842075173279428103504117746722346581987825143261978794674517195307859044272000. - _Max Alekseyev_, Oct 07 2023 %e A306724 A062354(14) = 12^2; %e A306724 A062354(3) = 2^3; %e A306724 A062354(170) = 12^4; %e A306724 A062354(3570) = 24^5; %e A306724 A062354(592922491) = 840^6; %e A306724 A062354(17194752239) = 840^7. %t A306724 a[n_] := Module[{k=2}, While[!IntegerQ[Surd[DivisorSigma[1, k]*EulerPhi[k], n]], k++]; k]; Array[a, 1, 5] %o A306724 (PARI) a(n) = {my(k=2); while (!ispower(sigma(k)*eulerphi(k), n), k++); k;} \\ _Michel Marcus_, Mar 06 2019 %Y A306724 Cf. A000010, A000203, A011257, A062354, A114077, A114078. %K A306724 nonn %O A306724 1,1 %A A306724 _Amiram Eldar_, Mar 06 2019 %E A306724 a(8) from _Giovanni Resta_, Mar 06 2019 %E A306724 a(9)-a(13) from _Daniel Suteu_ confirmed, a(14)-a(16) added by _Max Alekseyev_, Oct 06 2023