A307322 Irregular triangle where row n is a list of indices in A002110 with multiplicity whose product is A004394(n).
0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 3, 2, 3, 1, 1, 1, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 4, 2, 4, 1, 1, 1, 4, 1, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 4, 1, 2, 2, 4, 1, 1, 3, 4, 1, 2, 5, 1, 1, 2, 5, 1, 1, 1, 2, 5, 1, 2, 2, 5, 1, 1, 3, 5, 1, 1, 2, 2
Offset: 1
Examples
Terms in the first rows n of this sequence, followed by the corresponding primorials whose product = A004394(n): n T(n,k) A002110(T(n,k)) A004394(n) ----------------------------------------------- 1: 0; 1 = 1 2: 1; 2 = 2 3: 1, 1; 2 * 2 = 4 4: 2; 6 = 6 5: 1, 2; 2 * 6 = 12 6: 1, 1, 2; 2 * 2 * 6 = 24 7: 2, 2; 6 * 6 = 36 8: 1, 1, 1, 2; 2 * 2 * 2 * 6 = 48 9: 1, 3; 2 * 30 = 60 10: 1, 1, 3; 2 * 2 * 30 = 120 11: 2, 3; 6 * 30 = 180 12: 1, 1, 1, 3; 2 * 2 * 2 * 30 = 240 13: 1, 2, 3; 2 * 6 * 30 = 360 14: 1, 1, 2, 3; 2 * 2 * 6 * 30 = 720 15: 1, 1, 4; 2 * 2 * 210 = 840 ... Row 6 = {1,1,2} since A002110(1)*A002110(1)*A002110(2) = 2*2*6 = 24 and A004394(6) = 24. The conjugate of {1,1,2} = {3,1} and 24 = 2^3 * 3^1. Row 10 = {1,1,3} since A002110(1)*A002110(1)*A002110(3) = 2*2*30 = 120 and A004394(10) = 120. The conjugate of {1,1,3} = {3,1,1} and 120 = 2^3 * 3^1 * 5^1.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10664 (rows 1 <= n <= 1200, flattened).
- Michael De Vlieger, Relation between A307322 and A306737.
Programs
-
Mathematica
Block[{s = Array[DivisorSigma[1, #]/# &, 10^6]}, Map[Table[LengthWhile[#, # >= i &], {i, Max@ #}] &@ If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@ FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] /. {} -> {0}] // Flatten
Comments