cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306759 Decimal expansion of the sum of reciprocals of Brazilian primes, also called the Brazilian primes constant.

This page as a plain text file.
%I A306759 #84 Apr 10 2019 14:01:00
%S A306759 3,3,1,7,5,4,4,6,6
%N A306759 Decimal expansion of the sum of reciprocals of Brazilian primes, also called the Brazilian primes constant.
%C A306759 The name "constant of Brazilian primes" is used in the article "Les nombres brésiliens" in link, théorème 4, page 36. Brazilian primes are in A085104.
%C A306759 Let S(k) be the sum of reciprocals of Brazilian primes < k. These values below come from different calculations by Jon, Michel, Daniel and Davis.
%C A306759    q            S(10^q)
%C A306759   ==    ========================
%C A306759    1    0.1428571428571428571...  (= 1/7)
%C A306759    2    0.2889927283868234859...
%C A306759    3    0.3229022355626914481...
%C A306759    4    0.3295236806353669357...
%C A306759    5    0.3312171311946179843...
%C A306759    6    0.3316038696349217289...
%C A306759    7    0.3317139158654747333...
%C A306759    8    0.3317434191078170412...
%C A306759    9    0.3317513267394988538...
%C A306759   10    0.3317535651668937256...
%C A306759   11    0.3317542057931842329...
%C A306759   12    0.3317543906772274268...
%C A306759   13    0.3317544444033188051...
%C A306759   14    0.3317544601136967527...
%C A306759   15    0.3317544647354485208...
%C A306759   16    0.3317544661014868080...
%C A306759   17    0.3317544665073451951...
%C A306759   18    0.3317544666282877863...
%C A306759   19    0.3317544666644601817...
%C A306759   20    0.3317544666753095766...
%C A306759 According to the Goormaghtigh conjecture, there are only two Brazilian primes which are twice Brazilian: 31 = (111)_5 = (11111)_2 and 8191 = (111)_90 = (1111111111111)_2. The reciprocals of these two numbers are counted only once in the sum.
%D A306759 Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 175.
%H A306759 Bernard Schott, <a href="/A125134/a125134.pdf">Les nombres brésiliens</a>, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
%H A306759 Wikipedia, <a href="https://en.wikipedia.org/wiki/Goormaghtigh_conjecture">Goormaghtigh conjecture</a>.
%F A306759 Equals Sum_{n>=1} 1/A085104(n).
%e A306759 1/7 + 1/13 + 1/31 + 1/43 + 1/73 + 1/127 + 1/157 + ... = 0.33175...
%o A306759 (PARI) brazil(N, L=List())=forprime(K=3, #binary(N+1)-1, for(n=2, sqrtnint(N-1, K-1), if(isprime((n^K-1)/(n-1)),listput(L, (n^K-1)/(n-1))))); Set(L);
%o A306759 brazilcons(lim,nbd) = r=brazil(10^lim); x=sum(M=1, #r, 1./r[M]);for(n=1, nbd, print1(floor(x*10^n)%10, ", "));\\ _Davis Smith_, Mar 10 2019
%o A306759 (PARI) cons(lim)=my(v=List(), t, k); for(n=2, sqrt(lim), t=1+n; k=1; while((t+=n^k++)<=lim, if(isprime(t), listput(v, t)))); v = vecsort(Vec(v), , 8); sum(k=1, #v, 1./v[k]); \\ _Michel Marcus_, Mar 11 2019
%Y A306759 Cf. A085104 (Brazilian primes), A002383 (Brazilian primes (111)_b), A225148 (Brazilian primes of the form (b^q-1)/(b-1) with q prime >= 5).
%Y A306759 Cf. A173898 (sum of the reciprocals of the Mersenne primes), A065421 (Brun's constant).
%K A306759 nonn,more,cons
%O A306759 0,1
%A A306759 _Bernard Schott_, Mar 08 2019