cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306775 Partial sums of A060648: sum of the inverse Moebius transform of the Dedekind psi function from 1 to n.

Original entry on oeis.org

1, 5, 10, 20, 27, 47, 56, 78, 95, 123, 136, 186, 201, 237, 272, 318, 337, 405, 426, 496, 541, 593, 618, 728, 765, 825, 878, 968, 999, 1139, 1172, 1266, 1331, 1407, 1470, 1640, 1679, 1763, 1838, 1992, 2035, 2215, 2260, 2390, 2509, 2609, 2658, 2888, 2953, 3101
Offset: 1

Views

Author

Daniel Suteu, Mar 09 2019

Keywords

Comments

In general, for m >= 1, Sum_{k=1..n} Sum_{d|k} psi_m(d) = Sum_{k=1..n} k^m * A064608(floor(n/k)), where psi_m(d) is the generalized Dedekind psi function.
Additionally, for m >= 1, Sum_{k=1..n} Sum_{d|k} psi_m(d) ~ (n^(m+1) * zeta(m+1)^2) / ((m+1) * zeta(2*(m+1))).

Crossrefs

Programs

  • Maple
    with(numtheory): psi := n -> n*mul(1+1/p, p in factorset(n)):
    seq(add(psi(i)*floor(n/i), i=1..n), n=1..80); # Ridouane Oudra, Aug 27 2019
  • Mathematica
    Accumulate[Table[Sum[EulerPhi[n/d] * DivisorSigma[0, d^2], {d, Divisors[n]}], {n, 1, 100}]] (* Vaclav Kotesovec, Oct 09 2019 *)
  • PARI
    a(n) = sum(k=1, n, 2^omega(k) * (n\k) * (1+n\k))/2;

Formula

a(n) ~ (5/4) * n^2.
a(n) = Sum_{k=1..n} A060648(k).
a(n) = Sum_{k=1..n} Sum_{d|k} A001615(d).
a(n) = Sum_{k=1..n} k * A064608(floor(n/k)).
a(n) = (1/2)*Sum_{k=1..n} 2^omega(k) * floor(n/k) * floor(1+n/k).
a(n) = Sum_{k=1..n} A001615(k)*floor(n/k). - Ridouane Oudra, Aug 27 2019