cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306778 Decimal expansion of Sum_{k>=2} (-1)^k * zeta(k) * zeta(3*k) / k.

This page as a plain text file.
%I A306778 #6 Feb 16 2025 08:33:55
%S A306778 5,9,0,7,3,5,8,5,5,5,1,1,9,8,4,2,5,1,5,9,0,4,3,4,8,2,0,5,9,7,7,4,6,7,
%T A306778 9,4,4,2,9,7,5,6,9,9,9,9,6,3,9,3,2,3,2,7,4,6,3,4,0,1,4,1,7,6,1,4,1,2,
%U A306778 9,2,1,9,5,5,6,0,9,7,6,7,0,8,6,2,1,8,7,2,1,5,1,4,7,9,4,2,0,8,2,4,9,0,6,6,0,6
%N A306778 Decimal expansion of Sum_{k>=2} (-1)^k * zeta(k) * zeta(3*k) / k.
%H A306778 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>
%H A306778 Wikipedia, <a href="http://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann Zeta Function</a>
%e A306778 0.590735855511984251590434820597746794429756999963932327463401417614129...
%p A306778 evalf(Sum((-1)^k*Zeta(k)*Zeta(3*k)/k, k=2..infinity), 120);
%o A306778 (PARI) sumalt(k=2, (-1)^k*zeta(k)*zeta(3*k)/k)
%Y A306778 Cf. A306769, A306774, A324597.
%K A306778 nonn,cons
%O A306778 0,1
%A A306778 _Vaclav Kotesovec_, Mar 09 2019