This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306789 #14 Jun 27 2023 09:23:37 %S A306789 1,2,18,800,183750,224042112,1475939646720,53195808994099200, %T A306789 10587785727897772143750,11721562427290210695200000000, %U A306789 72596493516095364770534596279431168,2527156530619699341247423878706695556300800,496395279097923766533851314609410101501472675840000 %N A306789 a(n) = Product_{k=0..n} binomial(n + k, n). %C A306789 Sum_{k=0..n} binomial(n + k, n) = binomial(2*n + 1, n). %C A306789 Product_{k=1..n} binomial(k*n, n) = (n^2)! / (n!)^n. %F A306789 a(n) = (n+1)^n * BarnesG(2*n+2) / (Gamma(n+2)^n * BarnesG(n+2)^2). %F A306789 a(n) ~ A * 2^(2*n^2 + 3*n/2 - 1/12) / (exp(n^2/2 + 1/6) * Pi^((n+1)/2) * n^(n/2 + 5/12)), where A is the Glaisher-Kinkelin constant A074962. %F A306789 a(n) = a(n-1)*2n*(2n-1)!^2/(n!^3*n^(n-1)). - _Chai Wah Wu_, Jun 26 2023 %t A306789 Table[Product[Binomial[n+k, n], {k, 0, n}], {n, 0, 13}] %t A306789 Table[(n+1)^n * BarnesG[2*n+2] / (Gamma[n+2]^n * BarnesG[n+2]^2), {n, 0, 13}] %o A306789 (Python) %o A306789 from math import factorial %o A306789 from functools import lru_cache %o A306789 @lru_cache(maxsize=None) %o A306789 def A306789(n): return A306789(n-1)*2*n*factorial(2*n-1)**2//factorial(n)**3//n**(n-1) if n else 1 # _Chai Wah Wu_, Jun 26 2023 %Y A306789 Cf. A001700, A306760. %K A306789 nonn %O A306789 0,2 %A A306789 _Vaclav Kotesovec_, Mar 10 2019