cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306807 An irregular fractal sequence: underline a(n) iff the absolute difference |a(n-1) - a(n)| is prime; all underlined terms rebuild the starting sequence.

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 6, 3, 1, 7, 5, 2, 8, 6, 3, 1, 9, 7, 5, 2, 10, 8, 6, 3, 1, 11, 9, 7, 5, 2, 12, 10, 8, 6, 3, 1, 13, 11, 9, 7, 5, 2, 14, 12, 10, 8, 6, 3, 1, 15, 13, 11, 9, 7, 5, 2, 16, 14, 12, 10, 8, 6, 3, 1, 17, 15, 13, 11, 9, 7, 5, 2, 18, 16, 14, 12, 10, 8, 6, 3, 1, 19, 17, 15, 13, 11, 9, 7, 5, 2, 20, 18, 16, 14, 12, 10, 8, 6, 3, 1
Offset: 1

Views

Author

Keywords

Comments

The sequence S starts with a(1) = 1 and a(2) = 2. S is extended by duplicating the first term A among the not yet duplicated terms, under the condition that the absolute difference |a(n-1) - a(n)| is prime. If this is not the case, we then extend S with the smallest integer X not yet present in S such that the absolute difference |a(n-1) - a(n)| is not prime. S is the lexicographically earliest sequence with this property.

Examples

			S starts with a(1) = 1 and a(2) = 2
Can we duplicate a(1) to form a(3)? No, as |a(2) - a(3)| would be 1 and 1 is not prime. We thus extend S with the smallest integer X not yet in S such that |a(2) - X| is not prime. We get a(3) = 3.
Can we duplicate a(1) to form a(4)? Yes, as |a(3) - a(4)| = 2, which is prime. We get a(4) = 1.
Can we duplicate a(2) to form a(5)? No, as |a(4) - a(5)| would be 1 and 1 is not prime. We thus extend S with the smallest integer X not yet in S such that |a(4) - X| is not prime; we get a(5) = 5.
Can we duplicate a(2) to form a(6)? Yes, as |a(6) - a(5)| = 3, which is prime; we get a(6) = 2.
Etc.
		

Crossrefs

Cf. A306803 (obtained by replacing the absolute difference by the sum in the definition).