cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306810 Inverse binomial transform of the continued fraction expansion of e.

This page as a plain text file.
%I A306810 #24 Aug 10 2024 16:22:16
%S A306810 2,-1,2,-4,7,-8,-2,41,-134,296,-485,512,82,-2107,6562,-13852,21871,
%T A306810 -22600,-2186,83105,-255878,531440,-826685,846368,59050,-2952451,
%U A306810 9034498,-18600436,28697815,-29229256,-1594322,98848025,-301327046,617003000,-947027861,961376768,43046722
%N A306810 Inverse binomial transform of the continued fraction expansion of e.
%H A306810 Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev <a href="https://www.colorado.edu/math/binomial-transforms-sequences-spring-2019">Binomial Transforms of Sequences</a>, CU Boulder Experimental Math Lab, Spring 2019.
%F A306810 a(n) = Sum{k=0...n}(-1)^(n+k)*binomial(n,k)*b(k), where b(k) is the k-th term of the continued fraction expansion of e.
%F A306810 Conjectures from _Colin Barker_, Mar 12 2019: (Start)
%F A306810 G.f.: (2 + 13*x + 37*x^2 + 55*x^3 + 42*x^4 + 14*x^5 + 2*x^6) / ((1 + x)*(1 + 3*x + 3*x^2)^2).
%F A306810 a(n) = - 7*a(n-1) - 21*a(n-2) - 33*a(n-3) - 27*a(n-4) - 9*a(n-5) for n>6.
%F A306810 (End)
%e A306810 For n = 3, a(3) = -binomial(3,0)*2 + binomial(3,1)*1 - binomial(3,2)*2 + binomial(3,3)*1 = -4.
%t A306810 nmax = 50; A003417 = ContinuedFraction[E, nmax+1]; Table[Sum[(-1)^(n + k)*Binomial[n, k]*A003417[[k + 1]], {k, 0, n}], {n, 0, nmax}] (* _Vaclav Kotesovec_, Apr 23 2020 *)
%o A306810 (Sage)
%o A306810 def OEISInverse(N, seq):
%o A306810     BT = [seq[0]]
%o A306810     k = 1
%o A306810     while k< N:
%o A306810         next = 0
%o A306810         j = 0
%o A306810         while j <=k:
%o A306810             next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
%o A306810             j = j+1
%o A306810         BT.append(next)
%o A306810         k = k+1
%o A306810     return BT
%o A306810 econt = oeis('A003417')
%o A306810 OEISInverse(50,econt)
%Y A306810 Continued fraction of e: A003417.
%Y A306810 Binomial transform of continued fraction of e: A306809.
%K A306810 easy,sign
%O A306810 0,1
%A A306810 _Sarah Arpin_, Mar 11 2019