A306812 Maximally idempotent integers with three or more factors.
273, 455, 1729, 2109, 2255, 2387, 3367, 3515, 4433, 4697, 4921, 5673, 6643, 6935, 7667, 8103, 8723, 8729, 9139, 9455, 10235, 10787, 11543, 13237, 13505, 14497, 16211, 16385, 16523, 17507, 18031, 18907, 20033, 20801, 21437, 22649, 23579, 24583
Offset: 1
Keywords
Examples
273 is the smallest maximally idempotent integer. Factorization is (3,7,13). Bipartite factorizations are (3,91), (7,39), (13,21). Lambda(273) = 12, (2*90),(6*38) and (12*20) are all divisible by 12, thus 273 is maximally idempotent. The same is true for 455 = 5*7*13. The next entry in the sequence, 1729=7*13*19, is a Carmichael number, but most Carmichael numbers are not maximally idempotent.
Links
- Barry Fagin, Table of n < 2^30
- Barry Fagin, Table of n < 2^30 with factorizations
- Barry Fagin, Idempotent Factorizations of Square-Free Integers, Information 2019, 10(7), 232.
Crossrefs
Programs
-
Python
## This uses a custom library of number theory functions and the numbthy library. ## Hopefully the names of the functions make the process clear. for n in range(2,max_n): factor_list = numbthy.factor(n) numFactors = len(factor_list) if numFactors <= 2: # skip primes and semiprimes continue if not bsflib.is_composite_and_square_free_with_list(n,factor_list): continue ipList = bsflib.idempotentPartitions(n, factor_list) if len(ipList) == 2**(numFactors-1)-1: print(n)
Comments