This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306852 #28 May 26 2021 00:54:54 %S A306852 1,1,1,1,1,1,1,2,9,37,121,331,793,1717,3434,6451,11561,20129,34885, %T A306852 62017,116281,232562,490337,1062601,2309385,4950751,10381281,21242341, %U A306852 42484682,83411715,161766061,312168761,603861897,1178135905,2326683921,4653367842 %N A306852 a(n) = Sum_{k=0..floor(n/7)} binomial(n,7*k). %H A306852 Seiichi Manyama, <a href="/A306852/b306852.txt">Table of n, a(n) for n = 0..3000</a> %H A306852 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,2). %F A306852 G.f.: (1 - x)^6/((1 - x)^7 - x^7). %F A306852 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + 2*a(n-7) for n > 6. %t A306852 a[n_] := Sum[Binomial[n,7*k], {k,0,Floor[n/7]}]; Array[a, 36, 0] (* _Amiram Eldar_, May 25 2021 *) %o A306852 (PARI) {a(n) = sum(k=0, n\7, binomial(n, 7*k))} %o A306852 (PARI) N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7-x^7)) %Y A306852 Column 7 of A306846. %K A306852 nonn,easy %O A306852 0,8 %A A306852 _Seiichi Manyama_, Mar 14 2019