cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306853 Positive integers equal to the permanent of the circulant matrix formed by their decimal digits.

This page as a plain text file.
%I A306853 #30 Feb 16 2025 08:33:55
%S A306853 1,2,3,4,5,6,7,8,9,261,370,407,52036,724212,223123410
%N A306853 Positive integers equal to the permanent of the circulant matrix formed by their decimal digits.
%C A306853 1, 2, 3, 4, 5, 6, 7, 8, 9, 370 and 407 are also equal to the determinant of the circulant matrix formed by their decimal digits.
%H A306853 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Permanent.html">Permanent</a>
%H A306853 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantMatrix.html">Circulant Matrix</a>
%e A306853      | 2 6 1 |
%e A306853 perm | 1 2 6 | = 2*2*2 + 6*6*6 + 1*1*1 + 1*2*6 + 6*1*2 + 2*6*1 = 261.
%e A306853      | 6 1 2 |
%e A306853 .
%e A306853      | 2 2 3 1 2 3 4 1 0 |
%e A306853      | 0 2 2 3 1 2 3 4 1 |
%e A306853      | 1 0 2 2 3 1 2 3 4 |
%e A306853      | 4 1 0 2 2 3 1 2 3 |
%e A306853 perm | 3 4 1 0 2 2 3 1 2 | = 223123410
%e A306853      | 2 3 4 1 0 2 2 3 1 |
%e A306853      | 1 2 3 4 1 0 2 2 3 |
%e A306853      | 3 1 2 3 4 1 0 2 2 |
%e A306853      | 2 3 1 2 3 4 1 0 2 |
%p A306853 with(linalg): P:=proc(q) local a, b, c, d, i, j, k, n, t;
%p A306853 for n from 1 to q do d:=ilog10(n)+1; a:=convert(n, base, 10); c:=[];
%p A306853 for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c];
%p A306853 for k from 2 to d do b:=[op([]), c[nops(c)]];
%p A306853 for j from 1 to nops(c)-1 do b:=[op(b), c[j]]; od;
%p A306853 c:=b; t:=[op(t), c]; od; if n=permanent(t)
%p A306853 then print(n); fi; od; end: P(10^7);
%o A306853 (PARI) mpd(n) = {my(d = digits(n)); matpermanent(matrix(#d, #d, i, j, d[1+lift(Mod(j-i, #d))]));}
%o A306853 isok(n) = mpd(n) == n; \\ _Michel Marcus_, Mar 14 2019
%o A306853 (Python)
%o A306853 from sympy import Matrix
%o A306853 A306853_list = []
%o A306853 for n in range(1,10**6):
%o A306853     s = [int(d) for d in str(n)]
%o A306853     m = len(s)
%o A306853     if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).per():
%o A306853         A306853_list.append(n) # _Chai Wah Wu_, Oct 18 2021
%Y A306853 Cf. A219324, A219327, A306662, A306593, A306714.
%Y A306853 Up to n=110 the permanent of the circulant matrix of the digits of n is equal to A101337 but from n=111 on it can differ.
%K A306853 nonn,base,more
%O A306853 1,2
%A A306853 _Paolo P. Lava_, Mar 13 2019
%E A306853 a(15) from _Vaclav Kotesovec_, Aug 19 2021