This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306853 #30 Feb 16 2025 08:33:55 %S A306853 1,2,3,4,5,6,7,8,9,261,370,407,52036,724212,223123410 %N A306853 Positive integers equal to the permanent of the circulant matrix formed by their decimal digits. %C A306853 1, 2, 3, 4, 5, 6, 7, 8, 9, 370 and 407 are also equal to the determinant of the circulant matrix formed by their decimal digits. %H A306853 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Permanent.html">Permanent</a> %H A306853 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantMatrix.html">Circulant Matrix</a> %e A306853 | 2 6 1 | %e A306853 perm | 1 2 6 | = 2*2*2 + 6*6*6 + 1*1*1 + 1*2*6 + 6*1*2 + 2*6*1 = 261. %e A306853 | 6 1 2 | %e A306853 . %e A306853 | 2 2 3 1 2 3 4 1 0 | %e A306853 | 0 2 2 3 1 2 3 4 1 | %e A306853 | 1 0 2 2 3 1 2 3 4 | %e A306853 | 4 1 0 2 2 3 1 2 3 | %e A306853 perm | 3 4 1 0 2 2 3 1 2 | = 223123410 %e A306853 | 2 3 4 1 0 2 2 3 1 | %e A306853 | 1 2 3 4 1 0 2 2 3 | %e A306853 | 3 1 2 3 4 1 0 2 2 | %e A306853 | 2 3 1 2 3 4 1 0 2 | %p A306853 with(linalg): P:=proc(q) local a, b, c, d, i, j, k, n, t; %p A306853 for n from 1 to q do d:=ilog10(n)+1; a:=convert(n, base, 10); c:=[]; %p A306853 for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c]; %p A306853 for k from 2 to d do b:=[op([]), c[nops(c)]]; %p A306853 for j from 1 to nops(c)-1 do b:=[op(b), c[j]]; od; %p A306853 c:=b; t:=[op(t), c]; od; if n=permanent(t) %p A306853 then print(n); fi; od; end: P(10^7); %o A306853 (PARI) mpd(n) = {my(d = digits(n)); matpermanent(matrix(#d, #d, i, j, d[1+lift(Mod(j-i, #d))]));} %o A306853 isok(n) = mpd(n) == n; \\ _Michel Marcus_, Mar 14 2019 %o A306853 (Python) %o A306853 from sympy import Matrix %o A306853 A306853_list = [] %o A306853 for n in range(1,10**6): %o A306853 s = [int(d) for d in str(n)] %o A306853 m = len(s) %o A306853 if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).per(): %o A306853 A306853_list.append(n) # _Chai Wah Wu_, Oct 18 2021 %Y A306853 Cf. A219324, A219327, A306662, A306593, A306714. %Y A306853 Up to n=110 the permanent of the circulant matrix of the digits of n is equal to A101337 but from n=111 on it can differ. %K A306853 nonn,base,more %O A306853 1,2 %A A306853 _Paolo P. Lava_, Mar 13 2019 %E A306853 a(15) from _Vaclav Kotesovec_, Aug 19 2021