cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306854 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has at least 5 distinct Fermi-Dirac prime factors.

This page as a plain text file.
%I A306854 #14 Mar 16 2019 16:13:07
%S A306854 1,840,3,280,9,120,7,216,5,168,11,210,4,270,13,264,15,56,27,40,21,72,
%T A306854 33,70,12,90,28,30,36,42,20,54,35,24,45,66,52,96,44,78,55,84,10,108,
%U A306854 14,60,18,105,8,135,22,140,6,180,26,132,32,156,34,165,38,189,46
%N A306854 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has at least 5 distinct Fermi-Dirac prime factors.
%C A306854 This sequence is a variant of A285487. Both sequences are permutations of the natural numbers and have similar graphical features.
%H A306854 Rémy Sigrist, <a href="/A306854/b306854.txt">Table of n, a(n) for n = 1..10000</a>
%H A306854 OEIS Wiki, <a href="/wiki/%22Fermi-Dirac_representation%22_of_n">"Fermi-Dirac representation" of n</a>
%H A306854 Rémy Sigrist, <a href="/A306854/a306854.png">Colored scatterplot of the first 10000 terms</a> (where the color is function of A064547(a(n)))
%H A306854 Rémy Sigrist, <a href="/A306854/a306854.gp.txt">PARI program for A306854</a>
%H A306854 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A306854 A064547(a(n) * a(n+1)) >= 5.
%e A306854 The first terms, alongside the Fermi-Dirac factorization of a(n) * a(n+1), are:
%e A306854   n   a(n)  a(n) * a(n+1)
%e A306854   --  ----  -------------
%e A306854    1     1  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
%e A306854    2   840  2^(2^0) * 2^(2^1) * 3^(2^1) * 5^(2^0)  * 7^(2^0)
%e A306854    3     3  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
%e A306854    4   280  2^(2^0) * 2^(2^1) * 3^(2^1) * 5^(2^0)  * 7^(2^0)
%e A306854    5     9  2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1)  * 5^(2^0)
%e A306854    6   120  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
%e A306854    7     7  2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1)  * 7^(2^0)
%e A306854    8   216  2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1)  * 5^(2^0)
%e A306854    9     5  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
%e A306854   10   168  2^(2^0) * 2^(2^1) * 3^(2^0) * 7^(2^0)  * 11^(2^0)
%e A306854   11    11  2^(2^0) * 3^(2^0) * 5^(2^0) * 7^(2^0)  * 11^(2^0)
%e A306854   12   210  2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0)  * 7^(2^0)
%o A306854 (PARI) See Links section.
%Y A306854 Cf. A064547, A285487, A306856 (inverse).
%K A306854 nonn,look
%O A306854 1,2
%A A306854 _Rémy Sigrist_, Mar 13 2019