This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306854 #14 Mar 16 2019 16:13:07 %S A306854 1,840,3,280,9,120,7,216,5,168,11,210,4,270,13,264,15,56,27,40,21,72, %T A306854 33,70,12,90,28,30,36,42,20,54,35,24,45,66,52,96,44,78,55,84,10,108, %U A306854 14,60,18,105,8,135,22,140,6,180,26,132,32,156,34,165,38,189,46 %N A306854 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has at least 5 distinct Fermi-Dirac prime factors. %C A306854 This sequence is a variant of A285487. Both sequences are permutations of the natural numbers and have similar graphical features. %H A306854 Rémy Sigrist, <a href="/A306854/b306854.txt">Table of n, a(n) for n = 1..10000</a> %H A306854 OEIS Wiki, <a href="/wiki/%22Fermi-Dirac_representation%22_of_n">"Fermi-Dirac representation" of n</a> %H A306854 Rémy Sigrist, <a href="/A306854/a306854.png">Colored scatterplot of the first 10000 terms</a> (where the color is function of A064547(a(n))) %H A306854 Rémy Sigrist, <a href="/A306854/a306854.gp.txt">PARI program for A306854</a> %H A306854 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A306854 A064547(a(n) * a(n+1)) >= 5. %e A306854 The first terms, alongside the Fermi-Dirac factorization of a(n) * a(n+1), are: %e A306854 n a(n) a(n) * a(n+1) %e A306854 -- ---- ------------- %e A306854 1 1 2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0) * 7^(2^0) %e A306854 2 840 2^(2^0) * 2^(2^1) * 3^(2^1) * 5^(2^0) * 7^(2^0) %e A306854 3 3 2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0) * 7^(2^0) %e A306854 4 280 2^(2^0) * 2^(2^1) * 3^(2^1) * 5^(2^0) * 7^(2^0) %e A306854 5 9 2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1) * 5^(2^0) %e A306854 6 120 2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0) * 7^(2^0) %e A306854 7 7 2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1) * 7^(2^0) %e A306854 8 216 2^(2^0) * 2^(2^1) * 3^(2^0) * 3^(2^1) * 5^(2^0) %e A306854 9 5 2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0) * 7^(2^0) %e A306854 10 168 2^(2^0) * 2^(2^1) * 3^(2^0) * 7^(2^0) * 11^(2^0) %e A306854 11 11 2^(2^0) * 3^(2^0) * 5^(2^0) * 7^(2^0) * 11^(2^0) %e A306854 12 210 2^(2^0) * 2^(2^1) * 3^(2^0) * 5^(2^0) * 7^(2^0) %o A306854 (PARI) See Links section. %Y A306854 Cf. A064547, A285487, A306856 (inverse). %K A306854 nonn,look %O A306854 1,2 %A A306854 _Rémy Sigrist_, Mar 13 2019