This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306864 #14 Mar 17 2019 21:09:37 %S A306864 1,1870,2,935,4,1045,8,1235,10,187,20,209,40,247,14,299,21,377,28,391, %T A306864 22,85,44,95,26,115,34,55,38,65,46,91,57,182,19,110,17,220,23,130,29, %U A306864 170,11,190,13,230,31,238,37,260,41,266,39,133,52,145,68,155,76 %N A306864 Lexicographically earliest sequence of distinct positive terms such that among the prime divisors of the product of two consecutive terms there are at least 4 runs of consecutive prime numbers. %C A306864 This sequence is a variant of A285487. %C A306864 This sequence is likely a permutation of the natural numbers. %H A306864 Rémy Sigrist, <a href="/A306864/b306864.txt">Table of n, a(n) for n = 1..25000</a> %H A306864 Rémy Sigrist, <a href="/A306864/a306864.png">Scatterplot of the first 25000 terms</a> %H A306864 Rémy Sigrist, <a href="/A306864/a306864_1.gp.txt">PARI program for A306864</a> %F A306864 A287170(a(n) * a(n+1)) >= 4. %e A306864 The first terms, alongside the corresponding runs, are: %e A306864 n a(n) runs in a(n)*a(n+1) %e A306864 --- ---- ------------------- %e A306864 1 1 2, 5, 11, 17 %e A306864 2 1870 2, 5, 11, 17 %e A306864 3 2 2, 5, 11, 17 %e A306864 4 935 2, 5, 11, 17 %e A306864 5 4 2, 5, 11, 19 %e A306864 6 1045 2, 5, 11, 19 %e A306864 7 8 2, 5, 13, 19 %e A306864 8 1235 2, 5, 13, 19 %e A306864 9 10 2, 5, 11, 17 %e A306864 10 187 2, 5, 11, 17 %e A306864 11 20 2, 5, 11, 19 %e A306864 12 209 2, 5, 11, 19 %e A306864 ... %e A306864 32 91 3, 7, 13, 19 %e A306864 33 57 2-3, 7, 13, 19 %e A306864 34 182 2, 7, 13, 19 %e A306864 ... %e A306864 662 1222 2, 7, 13, 47 %e A306864 663 448 2, 7, 17, 73 %e A306864 664 1241 2-3, 7-11, 17, 73 %e A306864 665 462 2-3, 7-11, 29, 43 %e A306864 666 1247 3, 17, 29, 43 %e A306864 ... %o A306864 (PARI) See Links section. %Y A306864 Cf. A287170, A285487. %K A306864 nonn,look %O A306864 1,2 %A A306864 _Rémy Sigrist_, Mar 14 2019