cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306871 Larger of reduced bi-unitary amicable pair.

This page as a plain text file.
%I A306871 #16 Mar 16 2019 17:00:24
%S A306871 2295,20735,75495,1148735,817479,774375,1902215,1341495,1348935,
%T A306871 2226014,2421704,3123735,3010215,5644415,3894344,4282215,4994055,
%U A306871 7509159,12251679,10106504,12900734,20444319,24519159,28206815,31356314,33362175,41950359,36129375,43321095
%N A306871 Larger of reduced bi-unitary amicable pair.
%C A306871 A pair m < n are a reduced bi-unitary amicable pair if bsigma(m) = bsigma(n) = m + n + 1, where bsigma(n) is the sum of bi-unitary divisors of n (A188999).
%C A306871 The terms are ordered according to their lesser counterparts (A306870).
%H A306871 Amiram Eldar, <a href="/A306871/b306871.txt">Table of n, a(n) for n = 1..528</a> (terms with lesser member below 2*10^11, from David Moews's site).
%H A306871 David Moews, <a href="http://djm.cc/amicable.html">Perfect, amicable and sociable numbers</a>.
%e A306871 2295 is in the sequence since it is the larger of the amicable pair (2024, 2295): bsigma(2024) = bsigma(2295) = 4320 = 2024 + 2295 + 1.
%t A306871 fun[p_, e_]:=If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); f[n_] := bsigma[n] - n - 1; s={}; Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, m]], {n, 1, 10^7}]; s
%Y A306871 Cf. A003503, A126173, A188999, A292981, A306870.
%K A306871 nonn
%O A306871 1,1
%A A306871 _Amiram Eldar_, Mar 14 2019