cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306874 Lexicographically earliest sequence of distinct positive terms such that the binary representation of the bitwise-OR of two consecutive terms has exactly one run of consecutive zeros.

This page as a plain text file.
%I A306874 #12 Mar 17 2019 21:09:46
%S A306874 1,4,2,6,8,3,9,5,12,10,11,16,7,17,13,20,14,18,19,21,22,23,32,15,33,24,
%T A306874 25,26,27,34,28,29,36,30,38,35,37,39,40,47,41,46,43,44,48,45,42,49,50,
%U A306874 51,52,55,53,54,56,57,58,59,64,31,65,60,61,68,62,66,67
%N A306874 Lexicographically earliest sequence of distinct positive terms such that the binary representation of the bitwise-OR of two consecutive terms has exactly one run of consecutive zeros.
%C A306874 This sequence is a variant of A306869.
%H A306874 Rémy Sigrist, <a href="/A306874/b306874.txt">Table of n, a(n) for n = 1..16384</a>
%H A306874 Rémy Sigrist, <a href="/A306874/a306874_1.gp.txt">PARI program for A306874</a>
%F A306874 A087116(a(n) OR a(n+1)) = 1.
%e A306874 The first terms, alongside the binary representation of a(n) OR a(n+1), are:
%e A306874   n   a(n)  bin(a(n) OR a(n+1))
%e A306874   --  ----  -------------------
%e A306874    1     1                101
%e A306874    2     4                110
%e A306874    3     2                110
%e A306874    4     6               1110
%e A306874    5     8               1011
%e A306874    6     3               1011
%e A306874    7     9               1101
%e A306874    8     5               1101
%e A306874    9    12               1110
%e A306874   10    10               1011
%e A306874   11    11              11011
%e A306874   12    16              10111
%e A306874   13     7              10111
%e A306874   14    17              11101
%e A306874   15    13              11101
%o A306874 (PARI) See Links section.
%Y A306874 Cf. A087116, A306869.
%K A306874 nonn,base,look
%O A306874 1,2
%A A306874 _Rémy Sigrist_, Mar 14 2019