cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306879 Smallest number m such that m, m+1, and m+2 all have exactly 2p divisors, where p = prime(n).

This page as a plain text file.
%I A306879 #14 Mar 26 2019 20:35:36
%S A306879 33,242,7939375,76571890623,104228508212890623,1489106237081787109375,
%T A306879 273062471666259918212890623,804505911103256259918212890623,
%U A306879 490685203356467392256259918212890623,6794675247932944436619977392256259918212890623,329757106427071213106619977392256259918212890623
%N A306879 Smallest number m such that m, m+1, and m+2 all have exactly 2p divisors, where p = prime(n).
%C A306879 a(4) was incorrect in "Some new results on consecutive equidivisible integers".
%H A306879 Chai Wah Wu, <a href="/A306879/b306879.txt">Table of n, a(n) for n = 1..50</a>
%H A306879 Vasilii A. Dziubenko, Vladimir A. Letsko, <a href="https://arxiv.org/abs/1811.05127">Consecutive positive integers with the same number of divisors</a>, arXiv:1811.05127 [math.NT], 2018.
%H A306879 Vladimir A. Letsko, <a href="http://arxiv.org/abs/1510.07081">Some new results on consecutive equidivisible integers</a>, arXiv:1510.07081 [math.NT], 2015.
%e A306879 33, 34, 35 all have exactly 2*prime(1) = 4 divisors, and 33 is the smallest number with this property, so a(1) = 33.
%Y A306879 Cf. A274639.
%Y A306879 A subsequence of A075040.
%K A306879 nonn
%O A306879 1,1
%A A306879 _Chai Wah Wu_, Mar 14 2019