This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306891 #29 Feb 16 2025 08:33:55 %S A306891 608981813029,608981813137,608981813191,608981813261,608981813269, %T A306891 608981813273,608981813311,608981813347,608981813357,608981813449, %U A306891 608981813459,608981813683,608981813701,608981813707,608981813711,608981813717,608981813719,608981813777,608981813779 %N A306891 Primes p for which pi_{3,2}(p) < pi_{3,1}(p), where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m). %C A306891 Primes p such that Sum_{primes q <= p} Kronecker(-3,q) > 0. %C A306891 Indices of negative terms in A321856. See also the comment about Chebyshev's bias in A321856. %H A306891 David A. Corneth, <a href="/A306891/b306891.txt">Table of n, a(n) for n = 1..10000</a> %H A306891 C. Bays, R. H. Hudson, <a href="https://doi.org/10.1090/S0025-5718-1978-0476616-X">Details of the First Region of Integers x with pi_{3,2}(x) < pi_{3,1}(x)</a>, Mathematics of Computation 32(142), 1978, pp. 571-576. %H A306891 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChebyshevBias.html">Chebyshev Bias</a> %H A306891 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev%27s_bias">Chebyshev's bias</a> %F A306891 a(n) = prime(A096630(n)). %o A306891 (PARI) my(i=0); forprime(p=608981813029, 608981820000, i+=kronecker(-3, p); if(i>0, print1(p, ", "))) %Y A306891 Cf. A096630, A112632, A297006, A321856. %Y A306891 Cf. also A199547, A096628. %K A306891 nonn %O A306891 1,1 %A A306891 _Jianing Song_, Mar 16 2019