cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306911 Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j)^j.

This page as a plain text file.
%I A306911 #9 Apr 11 2019 09:25:54
%S A306911 1,1,1,0,1,1,2,2,1,2,1,2,5,4,7,9,7,10,9,9,13,13,18,27,31,42,53,61,71,
%T A306911 83,95,98,115,131,147,176,207,258,313,395,481,581,721,848,1014,1179,
%U A306911 1367,1586,1804,2064,2338,2698,3083,3559,4142,4819,5732,6768,8036,9582,11426
%N A306911 Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j)^j.
%H A306911 Robert Israel, <a href="/A306911/b306911.txt">Table of n, a(n) for n = 0..4000</a>
%p A306911 N:= 100:
%p A306911 S:= series(add(x^(k^2)*mul((1+x^j)^j,j=1..min(k,N-k^2)),k=0..floor(sqrt(N))), x, N+1):
%p A306911 seq(coeff(S,x,n),n=0..N); # _Robert Israel_, Apr 10 2019
%t A306911 nmax = 60; CoefficientList[Series[Sum[x^(k^2) Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
%Y A306911 Cf. A306708, A306734, A318771.
%K A306911 nonn
%O A306911 0,7
%A A306911 _Ilya Gutkovskiy_, Mar 16 2019