cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306921 Number of ways of breaking the binary expansion of n into consecutive blocks with no leading zeros.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 5, 5, 8, 8, 9, 9, 12, 12, 8, 8, 12, 12, 12, 12, 16, 16, 6, 6, 10, 10, 12, 12, 16, 16, 12, 12, 18, 18, 18, 18, 24, 24, 10, 10, 16, 16, 18, 18, 24, 24, 16, 16, 24, 24, 24, 24, 32, 32, 7, 7, 12, 12, 15, 15, 20, 20, 16
Offset: 0

Views

Author

Peter Kagey, Mar 16 2019

Keywords

Comments

The number 0 is not considered to have a leading zero.
a(n) >= 2^(A000120(n) - 1).
a(2^n - 1) = 2^(n-1) for n > 0.
a(2^n) = n+1.
Conjecture: n appears A067824(n) times for n > 1.

Examples

			For n = 13 the a(13) = 6 partitions are [1101], [1, 101], [110, 1], [1, 10, 1], [11, 0, 1], and [1, 1, 0, 1].
Notice that [1, 1, 01] and [11, 01] are not valid partitions because the last part has a leading zero.
		

Crossrefs

A321318 gives number of distinct sums of such partitions.

Formula

From Charlie Neder, May 08 2019: (Start)
If n = k*2^e + {0,1} with k odd and e > 0, then a(n) = a(k)*(e+1).
Proof: Each partition of n is uniquely determined by a partition of k (call it K) and a choice of some number, from 0 to e, of trailing digits to append to the final part in K, since any remaining digits must appear as singletons. The conjecture follows, since each ordered factorization of a number m produces two numbers n such that a(n) = m, one of each parity, and A067824(n) = 2*A074206(n).
Corollary: For n >= 1, a(2n) = a(2n+1) = Product{k+1 | k in row n of A066099}. (End)