This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306934 #18 Feb 25 2024 12:41:25 %S A306934 1,-10,0,0,-70,-48,0,0,-120,-250,0,0,-240,-240,0,0,-550,-480,0,0,-528, %T A306934 -480,0,0,-720,-1210,0,0,-960,-720,0,0,-1080,-1440,0,0,-1750,-1200,0, %U A306934 0,-1680,-1920,0,0,-1680,-1488,0,0,-2160,-3370,0,0,-2640,-1680,0,0,-2400,-3360,0,0,-2880,-2640 %N A306934 Coefficients of q-expansion of Eisenstein series G_{5/2}(tau) multiplied by 120. %H A306934 H. Cohen, <a href="https://doi.org/10.1007/BF01436180">Sums involving the values at negative integers of L-functions of quadratic characters</a>, Math. Ann. 217 (1975), no. 3, 271-285. %H A306934 X. Wang and D. Pei, <a href="https://doi.org/10.1007/978-3-642-29302-3">Modular Forms with Integral and Half-Integral Weights</a>, Science Press Beijing, Springer Berlin Heidelberg, 2012. x+432 pp. %H A306934 D. Zagier, <a href="https://people.mpim-bonn.mpg.de/zagier/files/tex/UtrechtLectures/UtBook.pdf">Modular Forms of One Variable</a>, Notes based on a course given in Utrecht, 1991. See page 50 (erroneously gives a(5) = -72). %o A306934 (Sage) %o A306934 def a(n): %o A306934 if n==0: return 1 %o A306934 if (n%4) not in [0,1]: return 0 %o A306934 D = Integer(n).squarefree_part() %o A306934 f = Integer(sqrt(n/D)) %o A306934 if (D%4) not in [0,1]: D, f = 4*D, f//2 %o A306934 X = kronecker_character(D) %o A306934 s = sum([moebius(d)*X(d)*d*sigma(f/d, 3) for d in f.divisors()]) %o A306934 return round((120*X.lfunction(100)(-1)*s).real()) # _Robin Visser_, Feb 24 2024 %Y A306934 Cf. A259825, A306935, A306936, A306937. %K A306934 sign %O A306934 0,2 %A A306934 _N. J. A. Sloane_, Mar 16 2019 %E A306934 Corrected and more terms from _Robin Visser_, Feb 24 2024