This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306963 #25 Nov 24 2024 02:48:14 %S A306963 3,9,9,5,3,5,2,8,0,5,2,3,1,3,4,4,8,9,8,5,7,5,8,0,4,6,8,6,3,3,6,9,3,7, %T A306963 1,9,4,3,3,5,4,4,2,8,0,4,6,6,9,5,2,7,2,7,5,1,7,0,7,3,0,4,4,9,1,2,4,3, %U A306963 8,0,1,6,6,0,8,8,3,8,0,4,2,9,8,1,8,4,4,5,9,4,8,7,4,1,8,1,2,6,6,8 %N A306963 Decimal expansion of Feigenbaum's constant 0.399535... %D A306963 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.9, pp. 66-67. %H A306963 M. Campanino, H. Epstein, and D. Ruelle, <a href="https://core.ac.uk/download/pdf/82699556.pdf">On Feigenbaum's functional equation g o g (lambda x) + lambda g(x) = 0</a>, Topology, Vol. 21, No. 2 (1982), pp. 125-129. %H A306963 Artem Dudko and Scott Sutherland, <a href="https://doi.org/10.1007/s00222-020-00949-8">On the Lebesgue measure of the Feigenbaum Julia set</a>, Inventiones mathematicae, Vol. 221 (2020), pp. 167-202. %H A306963 Mitchell J. Feigenbaum, <a href="https://doi.org/10.1007/BF01020332">Quantitative universality for a class of nonlinear transformations</a>, J. Statist. Phys., Vol. 19, No. 1 (1978), pp. 25-52; <a href="http://neweb.fis.unical.it/files/fl178/2835feigenbaum1.pdf">alternative link</a>; <a href="https://web.archive.org/web/20160413222939/https://signallake.com/innovation/feigenbaum103177.pdf">Wayback Machine copy</a>. %H A306963 Mitchell J. Feigenbaum, <a href="https://doi.org/10.1007/BF01107909">The universal metric properties of nonlinear transformations</a>, J. Statist. Phys., Vol. 21, No. 6 (1979), pp. 669-706; <a href="https://citeseerx.ist.psu.edu/pdf/3027e9a922263c308227e2d9efaef2a16d0fbdb5">CiteSeerX</a>; <a href="https://web.archive.org/web/20200706092310/http://signallake.com/innovation/feigenbaum052979.pdf">Wayback Machine copy</a>. %H A306963 J. Thurlby, <a href="https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.840285">Rigorous calculations of renormalisation fixed points and attractors</a>, PhD thesis, U. Portsmouth, (2021). 400 digits in section 3.8. %F A306963 Equals 1/A006891. - _Stefano Spezia_, Nov 23 2024 %e A306963 0.3995352805231344898575... %Y A306963 Cf. A006890, A006891, A119277, etc. %K A306963 nonn,cons %O A306963 0,1 %A A306963 _N. J. A. Sloane_, Mar 18 2019 %E A306963 More terms from Dudko and Sutherland (2020) added by _Amiram Eldar_, May 15 2021 %E A306963 a(22)-a(99) from _Stefano Spezia_, Nov 23 2024