cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306967 a(n) is the first Zagreb index of the Fibonacci cube Gamma(n).

This page as a plain text file.
%I A306967 #16 Mar 29 2019 04:16:28
%S A306967 2,6,22,54,132,292,626,1290,2594,5102,9864,18792,35362,65838,121454,
%T A306967 222246,403788,728972,1308562,2336946,4154170,7353310,12965904,
%U A306967 22781520,39897410,69662166,121292998,210642966,364928532,630794356
%N A306967 a(n) is the first Zagreb index of the Fibonacci cube Gamma(n).
%C A306967 The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
%C A306967 The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph.
%C A306967 In the Maple program, T(n,k) gives the number of vertices of degree k in the Fibonacci cube Gamma(n) (see A245825).
%H A306967 S. Klavžar, <a href="http://dx.doi.org/10.1007/s10878-011-9433-z">Structure of Fibonacci cubes: a survey</a>, J. Comb. Optim., 25, 2013, 505-522.
%H A306967 S. Klavžar, M. Mollard and M. Petkovšek, <a href="https://doi.org/10.1016/j.disc.2011.03.019">The degree sequence of Fibonacci and Lucas cubes</a>, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
%F A306967 a(n) = Sum_{k=1..n} T(n,k)*k^2, where T(n,k) = Sum_{i=0..k} binomial(n-2*i, k-i) * binomial(i+1, n-k-i+1).
%F A306967 Conjectures from _Colin Barker_, Mar 28 2019: (Start)
%F A306967 G.f.: 2*x*(1 + 2*x^2 - x^3) / (1 - x - x^2)^3.
%F A306967 a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6) for n>6.
%F A306967 (End)
%e A306967 a(2) = 6 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the Zagreb index is 1^2 + 1^2 + 2^2 = 6 (or (1 + 2) + (2 + 1) = 6).
%p A306967 T:=(n,k) -> sum(binomial(n - 2*i, k - i) * binomial(i + 1, n - k - i + 1), i = 0..k): seq(add(T(n, k)*k^2, k=1..n), n=1..30);
%Y A306967 Cf. A245825.
%K A306967 nonn
%O A306967 1,1
%A A306967 _Emeric Deutsch_, Mar 26 2019